点击切换搜索课件文库搜索结果(50)
文档格式:DOC 文档大小:905KB 文档页数:27
定义与基本性质 一、向量的内积定义1设V是实数域R上一个向量空间在V上定义了一个二元实函数,称为内积记作(a,B),它具有以下性质:
文档格式:DOC 文档大小:254.5KB 文档页数:3
5.1.1线性空间上的线性函数的定义 1、线性函数的定义 定义设V为数域K上的线性空间,fV→K为映射,满足f(a+B)=f(a)+f(),va,B∈V;f(ka)kf(a),∈k,aev,则称f为由V到K的一个线性函数(即f为V到K的一个线性映射)如同一般的线性映射,有以下事实:
文档格式:DOC 文档大小:199.5KB 文档页数:5
2.6.1分块矩阵的乘法,准对角阵的乘积和秩 1、矩阵的分块和分块矩阵的乘法 设A是属于K上的m×n矩阵,B是K上n×k矩阵,将A的行分割r段,每段分别包含m,m2,,m,个行,又将A的列分割为s段,每段包含nn2,n个列。于是A可用小块矩阵表示如下:
文档格式:DOC 文档大小:199.5KB 文档页数:5
2.6.1分块矩阵的乘法,准对角阵的乘积和秩 1、矩阵的分块和分块矩阵的乘法 设A是属于K上的m×n矩阵,B是K上n×k矩阵,将A的行分割r段,每段分别包含m,m2,,m,个行,又将A的列分割为s段,每段包含nn2,n个列。于是A可用小块矩阵表示如下:
文档格式:DOC 文档大小:199.5KB 文档页数:5
2.6.1分块矩阵的乘法,准对角阵的乘积和秩 1、矩阵的分块和分块矩阵的乘法 设A是属于K上的m×n矩阵,B是K上n×k矩阵,将A的行分割r段,每段分别包 含m,m2,,m,个行,又将A的列分割为s段,每段包含nn2,n个列。于是A可用 小块矩阵表示如下: A1A12… A=4424
文档格式:DOC 文档大小:70.5KB 文档页数:3
下面利用行列式的性质给出一个计算行列式的方法. 在§3 我们看到,一个上三角形行列式
文档格式:DOC 文档大小:245.5KB 文档页数:3
9-3实系数多项式根的分布 9.3.1复系数多项式的根的绝对值的上界 命题设f(x)=axn+a1xn+…+an∈C[x],其中a≠0而n≥1。令 a=max{ 则对f(x)的任一复根a,有|ak1+A/a 证明如果A=0,则a=0,命题成立。下面设A>0 如果|a1+A/a,那么,因为f(a)=0,故有 la Haa++aa a+…+an ≤A(ar-++1)=a(la--1)/(a-1) 现在|a>1,故从上式立刻得到 la a\ Ala\ /(al-1) 两边消去|a,得|ak1+A/a|,矛盾
文档格式:DOC 文档大小:854.5KB 文档页数:19
定义1设V是数域P上的一个线性空间,f是V到P的一个映射,如果f 满足 1)f(a+)=f(a)+f() 2) f(ka)=(a), 式中a,B是V中任意元素,k是P中任意数,则称f为V上的一个线性函数 从定义可推出线性函数的以下简单性质:
文档格式:PDF 文档大小:370.4KB 文档页数:22
1.按通常数的加法与乘法,下列集合是否构成实数域R上的线性空间? (1)整数集Z:(2)有理数集Q;(3)实数集R;(4)复数集C
文档格式:DOC 文档大小:209KB 文档页数:3
9-4单变量有理函数域 9.4.1域上的一元有理分式域的定义 设R为一整环,命S={(b,a)|a,b∈R,a≠0}。现在S中规定为 逐一验证“反身性”、“对称性”、“传递性”可知为一等价关系。用(b,a)表示与 (ba)等价的元素的全体。现记S关于u的等价类的集合为%,则(b,a)是中的元 素。下面在上定义二元运算:
上页12345下页
热门关键字
搜索一下,找到相关课件或文库资源 50 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有