点击切换搜索课件文库搜索结果(653)
文档格式:PPT 文档大小:491KB 文档页数:26
隐函数的求导法则 一、一个方程的情形 1.F(x,y)=0 隐函数存在定理1设函数F(x,y)在点P(x,yo)的 某一邻域内具有连续的偏导数,且F(x,yo)=0, F(x,yo)≠0,则方程F(x,y)=0在点P(x,yo)的 某一邻域内恒能唯一确定一个单值连续且具有连续 导数的函数y=f(x),它满足条件yo=f(x),并
文档格式:PPT 文档大小:535.5KB 文档页数:29
偏导数 我们已经知道一元函数的导数是一个很重 要的概念,是研究函数的有力工具,它反映了该 点处函数随自变量变化的快慢程度。对于多元函 数同样需要讨论它的变化率问题。虽然多元函数 的自变量不止一个,但实际问题常常要求在其它 自变量不变的条件下,只考虑函数对其中一个自 变量的变化率,因此这种变化率依然是一元函数 的变化率问题,这就是偏导数概念,对此给出如 下定义
文档格式:PPT 文档大小:587KB 文档页数:57
忌数的概念 在许多实际问题中,需要从数量上研究变量的 变化速度。如物体的运动速度,电流强度,线密 度,比热,化学反应速度及生物繁殖率等,所有 这些在数学上都可归结为函数的变化率问题,即导数。 本章将通过对实际问题的分析,引出微分学中两个最重要的基本概念导数与微分,然后再建立求导数与微分的运算公式和法则,从而解决 有关变化率的计算问题
文档格式:DOC 文档大小:423KB 文档页数:8
微分学讨论题 1.设f(x,y)在点M(x0,y0)可微 af (xo, yo) af(xo, yo) =1,则∫(x,y)在点M(x0,y)的微分是( 2.已知(x+ay)x+yzy 为某个二元函数的全微分,则a=() x+ 3.设函数二=f(x,y)是由方程xz+x2+y2+2=√2确定的在点(0-)求止 (dx-√2dy) 4.设∫(x,y,z)=xy2+yz2+xx2,求 a2f(0,0,1)a2f(10.2)a2f(0,-10)03f(2,0,1) 2.2.0.0) 5.求下列函数在指定点的全微分
文档格式:DOC 文档大小:307.5KB 文档页数:9
第二章多元函数微分学 11-Exe-2习题讨论(II) 11Exe2-1讨论题 11-Exe-2-1参考解答 习题讨论 题目 若函数z=(x),方程Fx-a,y-=0确定,其a,b,c 为常数,F∈C2,证明: (1)由z=z(x,y)确定的曲面上任一点的切平面共点 (2)函数z=2(x,y)满足偏微分方程 a202=(a dxdy 今有三个二次曲面 2.设曲面S由方程ax+by+c=G(x2+y2+x2)确定,试证明: 曲面S上任一点的法线与某定直线相交
文档格式:DOC 文档大小:566.5KB 文档页数:12
第三节复合函数微分法 2-3复合函数微分法 23-1复合函数导数公式 23-2方向导数与梯度 第四讲复合函数微分法 课后作业 阅读:第二章第三节:pp.40-49 预习:第二章第四节:pp.50-58 作业:第二章习题3:pp.49-50:1,(2),(3,⑤5);2;4;6;7;9 2-3复合函数微分法 23-1复合函数导数公式 ()任何具体的初等多元函数的偏导数均可由一元函数求导公式解决,例 对函数z=sin-cos,求与一是简单的
文档格式:DOC 文档大小:652KB 文档页数:11
第二章第四节隐函数微分法 2-4隐函数与隐函数的导数 2-4-1隐函数求导 2-4-2隐函数存在性问题 辅导课事宜 班级 助教姓名助教住址助教电话 自21,自22,电机系(7) 计算机科学系(3),医学院(6)张靖|221412 62776299 13661167656 2自23,自24,其他系(5)张李军20-304 62775069
文档格式:DOC 文档大小:1.59MB 文档页数:28
[选择题] 容易题1—39,中等题40—106,难题107—135。 1.设函数y=f(x)在点x处可导,△y=fx+h)-f(x),则当h→0时,必有 () (A)dy是h的同价无穷小量 (B)△y-dy是h的同阶无穷小量。 (C)dy是比h高阶的无穷小量 ()△y-dy是比h高阶的无穷小量 答D 2.已知f(x)是定义在(∞,+∞)上的一个偶函数且当x0,f(x)0,f\(x)0,f\(x)>0 ()f(x)0 答C
文档格式:DOC 文档大小:696KB 文档页数:6
第六节含参变量的积分 4-6-2广义含参积分 第十六讲广义含参变量积分 课后作业: 阅读:第四章第六节:含参变量积分pp.13--141 预习:第五章第一节:曲线积分pp.142--151 作业 1.证明下列积分在参变量的指定区间上一致收敛 ()xe-dx(as≤b)
文档格式:DOC 文档大小:1.37MB 文档页数:27
选择题] 容易题1-36,中等题37-87,难题88-99。 x+3y+2z+1=0 1.设有直线L 及平面x:4x-2 2=0,则直线L 2x-y-10+3=0 (A)平行于丌。(B)在上丌。(C)垂直于x。(D)与丌斜交 2.二元函数∫(x,y)= (x.(09在点0处() (x,y)=(0,0) (A)连续,偏导数存在 (B)连续,偏导数不存在 (C)不连续,偏导数存在 (D)不连续,偏导数不存在 设函数n=Mx9)1=x由方程组{=2+”。确定,则当n一时, y=u +l (C)-l (D) 答:B
首页上页2829303132333435下页末页
热门关键字
搜索一下,找到相关课件或文库资源 653 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有