点击切换搜索课件文库搜索结果(865)
文档格式:DOC 文档大小:32KB 文档页数:3
一、A型题 1.b2.c3.d4.b.a6.c7.b8.9.B10.B 11.c12.a13.b14.c15.b16.d17.a18.d19.b20.a
文档格式:DOC 文档大小:45KB 文档页数:6
一、单项选择题 1.b2.c3.d4.d5.b6.c7.d8.b 二、多项选择题 1. ABC 2. ADB 3. AD 4. ACD 5.ABCD 6. ACD 7. AC 8. AE 9. ACDE 10. ABDE 三、判断题 1.×2.√3.×4.√5.×6.√7.×8.×9.×10.√
文档格式:DOC 文档大小:32KB 文档页数:2
第五章参考答案 一、单项选择题: 1、B、2、A、3、D、4、C、5、A、6-2 3BCBCD3;CDBDD;ADBAC;CDA 二2、多项选择题: 1\\AC; 2\\ABCD, 3\\AB; 4\\ABCD; 5\\AC 6\\BC: 7\\AC; 8\\AB; 9\\ABCD: 10\\ABC; 11\\ABCD;
文档格式:PPT 文档大小:2.66MB 文档页数:134
10.1 单片机扩展D/A转换器概述 10.2 单片机扩展并行8位DAC0832的设计 10.2.1 DAC0832简介 10.2.2 单片机与8位D/A转换器0832的接口设计 10.3 AT89S52单片机与12位D/A转换器AD667的接口设计 10.3.1 12位D/A转换器AD667简介 10.3.2 AD667与AT89S51单片机的接口设计 10.3.3 AD667使用中的技术细节 10.4 AT89S51与串行输入的12位D/A转换器AD7543的接口设计 10.4.1 AD7543简介 10.4.2 单片机扩展AD7543的接口设计 10.5 单片机扩展A/D转换器概述 10.6 单片机扩展并行8位A/D转换器ADC0809 10.6.1 ADC0809简介 10.6.2 单片机与ADC0809的接口设计 10.7 AT89S52单片机扩展12位串行ADC-TLC2543的设计 10.7.1 TLC2543的特性及工作原理 10.7.2 单片机扩展TLC2543的设计 10.8 AT89S52与双积分型A/D转换器MC14433的接口 10.8.1 MC14433 A/D转换器简介 10.8.2 单片机与MC14433的接口设计 10.9 AT89S52单片机与V/F转换器的接口 10.9.1 用V/F转换器实现A/D转换的原理 10.9.2 常用V/F转换器LMX31简介 10.9.3 V/F转换器与单片机的接口设计 10.9.4 V/F转换的应用设计
文档格式:PPT 文档大小:2.66MB 文档页数:134
10.1 单片机扩展D/A转换器概述 10.2 单片机扩展并行8位DAC0832的设计 10.2.1 DAC0832简介 10.2.2 单片机与8位D/A转换器0832的接口设计 10.3 AT89S52单片机与12位D/A转换器AD667的接口设计 10.3.1 12位D/A转换器AD667简介 10.3.2 AD667与AT89S51单片机的接口设计 10.3.3 AD667使用中的技术细节 10.4 AT89S51与串行输入的12位D/A转换器AD7543的接口设计 10.4.1 AD7543简介 10.4.2 单片机扩展AD7543的接口设计 10.5 单片机扩展A/D转换器概述 10.6 单片机扩展并行8位A/D转换器ADC0809 10.6.1 ADC0809简介 10.6.2 单片机与ADC0809的接口设计 10.7 AT89S52单片机扩展12位串行ADC-TLC2543的设计 10.7.1 TLC2543的特性及工作原理 10.7.2 单片机扩展TLC2543的设计 10.8 AT89S52与双积分型A/D转换器MC14433的接口 10.8.1 MC14433 A/D转换器简介 10.8.2 单片机与MC14433的接口设计 10.9 AT89S52单片机与V/F转换器的接口 10.9.1 用V/F转换器实现A/D转换的原理 10.9.2 常用V/F转换器LMX31简介 10.9.3 V/F转换器与单片机的接口设计 10.9.4 V/F转换的应用设计
文档格式:PDF 文档大小:1.24MB 文档页数:7
实验选取了Ⅰ级和Ⅱ级两种粉煤灰,以石灰和脱硫石膏为激发剂制备的胶凝材料完全取代传统的胶结剂水泥,以胶砂比为1:4,水胶比为1:1左右制备的粉煤灰全尾砂充填料在45±1℃下养护3 d,强度可达5.432 MPa,在20±1℃下养护28 d强度可达3~7 MPa,满足一般矿山对充填料的要求.根据料浆质量分数和坍落度关系曲线,得到了该材料制备成的可泵送膏体质量分数范围为80.5%~83.0%.通过X射线衍射和扫描电镜分析,胶凝材料的水化产物主要为凝胶类物质、钙矾石和方解石
文档格式:PDF 文档大小:1.02MB 文档页数:10
复旦大学:《药物设计学》课程教学资源(教学研究)基于配体结构的药物设计_Design, Synthesis, and Evaluation of Indolebutylamines as a Novel Class of Selective Dopamine D3 Receptor Ligands
文档格式:PDF 文档大小:3.24MB 文档页数:6
复旦大学:《药物设计学》课程教学资源(教学研究)基于靶点结构的药物设计_新型多巴胺D3受体抑制剂的发现
文档格式:PDF 文档大小:1.71MB 文档页数:11
为明确石粉掺合料对地聚物材料的作用机理,以赤泥基注浆材料为研究对象,系统研究了石粉掺量和粒径分布对赤泥基注浆材料浆体性能、力学性能和微观结构的作用规律,并结合X射线衍射仪(XRD)、压汞仪(MIP)和扫描电镜(SEM)等微观测试手段分析其作用机理。研究表明,结石体力学强度随石粉掺量的上升先增大后减小,当石粉的质量分数为5%时抗压强度最高,3 d时可达5.65 MPa,抗压强度提升幅度为18.94%,同时浆液泌水率上升幅度仅为9.85%,且28 d结石体孔隙率降低了18.35%,因此,5%为石粉在赤泥基注浆材料中的最佳质量分数。在石粉最佳质量分数条件下,随着石粉平均粒径减小,浆液凝结时间及泌水率均呈现下降的趋势;当石粉平均粒径达到8 μm时,石粉“填充效应”和“成核效应”作用尤为明显,浆液黏度突升,且3 d和28 d试样强度分别提升了11.86%和10%,故石粉平均粒径越小,其对赤泥基注浆材料的提升作用越显著,赤泥基注浆材料的最佳粉料质量配比为赤泥47.5%,矿粉47.5%,石粉5%;微观分析证实,石粉在浆液水化历程中以物理特性参与其中,为Na2O–SiO2–Al2O3–H2O凝胶(N–A–S–H), 水化硅铝酸钙凝胶(C–A–S–H)和水化硅酸钙凝胶(C–S–H)等凝胶提供成核位点,供地聚物凝胶沉淀和生长,加速浆液水化
文档格式:DOC 文档大小:26KB 文档页数:1
#include void output(struct person*p) printf(\%-5s%3c%7d%8.1f\, p->name, p->sex, p->age, p->height) struct person*ptr, per[3]=(\#5\, F, 20, 180.4)
首页上页3031323334353637下页末页
热门关键字
搜索一下,找到相关课件或文库资源 865 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有