点击切换搜索课件文库搜索结果(4045)
文档格式:PDF 文档大小:249.35KB 文档页数:24
Fourier 变换及其逆变换 前面关于 Fourier 级数的论述都是对周期函数而言的,那么对于 非周期函数,又该如何处理呢? 在 +∞−∞ ),( 上可积的非周期函数 f x( )可以看成是周期函数的极限 情况,处理思路是这样的: (1) 先取 f x( )在[ ,] −T T 上的部分(即把它视为仅定义在[ ,] −T T 上 的函数),再以2T 为周期,将它延拓为 +∞−∞ ),( 上的周期函数 f x T ( );
文档格式:PDF 文档大小:283.04KB 文档页数:46
数列与数列极限 数列是指按正整数编了号的一串数: xx x 1 2 n ,,,, \ \, 通常表示成{ xn },其中 xn称为该数列的通项
文档格式:PDF 文档大小:273.15KB 文档页数:17
离散 Fourier 变换 人们刚开始利用无线电技术传输信号时,是将连续信号进行某种 调制处理后直接传送的(图 16.5.1),本质上传送的还是连续信号(也 叫模拟信号)。这样的传输方式抗干扰能力差,失真严重,尤其是经 过长距离传送或多级传递后,信号可能面目全非,质量自然难尽人意
文档格式:PDF 文档大小:273.2KB 文档页数:36
Dirichlet 积分 仔细观察上一节中的几幅图像后可以得到这样的直觉:对于一般 的以2π为周期的函数 f x( ),除了个别点之外(看来是不连续点),当 m → ∞ 时,它的 Fourier 级数的部分和函数序列{ m xS )( }
文档格式:PDF 文档大小:172.92KB 文档页数:15
含参变量常义积分的定义 设 yxf ),( 是定义在闭矩形 × dcba ],[],[ 上的连续函数,对于任意固 定的 ∈ dcy ],[ , yxf ),( 是 ba ],[ 上关于 x的一元连续函数,因此它在 ba ],[ 上的积分存在
文档格式:PDF 文档大小:391.06KB 文档页数:40
第二类曲线积分 设L为空间中一条可求长的连续曲线,起点为 A,终点为B(这 时称L为定向的)。一个质点在力 F = i + j + zyxRzyxQzyxPzyx ),,(),,(),,(),,( k 的作用下沿L从 A移动到B , 我们要计算F zyx ),,( 所作的 功
文档格式:PDF 文档大小:449.96KB 文档页数:53
Green 公式 设L为平面上的一条曲线,它的方程是 = + tytxt )()()( jir ,α ≤ t ≤ β 。 如果 α = rr β )()( ,而且当 ),(, tt 21 ∈ α β , 21 ≠ tt 时总成立 )()( 1 2 ≠ rr tt ,则称 L为简单闭曲线(或 Jordan 曲线)。这就是说,简单闭曲线除两个端 点相重合外,曲线自身不相交
文档格式:PDF 文档大小:376.41KB 文档页数:41
曲线坐标 设U 为uv平面上的开集,V 是xy平面上开集,映射 T: ( , ), ( , ) x = x uv y yuv = 是U 到V 的一个一一对应,它的逆变换记为T u uxy v vxy − = = 1: ( , ), ( , )。 在U 中取直线u u = 0,就相应得到xy平面上的一条曲线 x xu v y yu v = ( , ), ( , ) 0 0 = , 称之为v -曲线;同样,取直线v v = 0 ,就相应得到xy平面上的u -曲线, x xuv y yuv = ( , ), ( , ) 0 0 =
文档格式:PDF 文档大小:214.27KB 文档页数:32
∑ ∞ = − 0 0 )( n n n xxa = a0 + )(1 0 − xxa 2 2 0 −+ xxa )( +\+ n n xxa )( − 0 +\ 这样的函数项级数称为幂级数。幂级数的部分和函数 Sn(x)是一个n −1 次多项式。 为了方便,我们通常取 0 x = 0, 也就是讨论 ∑ ∞ n=0 n n xa = a0 + 1 xa 2 2 + xa +\+ n n xa +\, 然后对所得的结果做一个平移 x = 0 − xt ,就可以平行推广到x0 ≠ 0的情 况
文档格式:PDF 文档大小:112.13KB 文档页数:9
定义 10.5.1 设函数 f (x)在闭区间[a, b]上有定义,如果存在多项 式序列{Pn (x)}在[a, b] 上一致收敛于 f (x),则称 f (x)在这闭区间上 可以用多项式一致逼近。 应用分析语言,“f (x)在[a, b]上可以用多项式一致逼近”可等价 表述为:
首页上页345346347348349350351352下页末页
热门关键字
搜索一下,找到相关课件或文库资源 4045 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有