点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:2.25MB 文档页数:51
本章介绍位势方程 △u=f(x) 它是椭圆型方程的典型代表.当f(x)不恒等于零时,称它为Pois son方程;当f(x)=0时,称方程为调和方程,它是本章主要讨 论的对象,其具体形式为
文档格式:PPT 文档大小:242KB 文档页数:11
对于n阶常系数非齐线性微分方程L[x=f(x),当然在求得它所 对应的齐线性方程L[x]=0的一个基本解组后可用常数变易求出 L[x]=f(x)的一个特解从求的它的通解但当非齐次项f(x具有特殊 形式时有特殊的解法下面介绍这样的方法中的一种即比较系数法
文档格式:PPT 文档大小:358.5KB 文档页数:12
在应用中,有时还需要研究含参数的微分方程 dy =(x,y,), (, )e =( ,, (, ) dx 设f(x,y,)在C,内连续,且在内一致地关于y满足局部 Lipschitz条 件,即对任意的(x,y,)G,存在以(x,y)为中心的球及L,对任意的 (x,y,)x,)ec,使得f(x,y,)-f(y=-y2},其中是与 无关的正数.于是对任意的∈(a,B),由解的存在唯一性定理, Cauchy 问题
文档格式:PDF 文档大小:193.49KB 文档页数:7
在数学分析课程中我们知道, 微分与积分具有密切的联系. 一方面, 若 f (x) 在[a,b] 上连续, 则对任意 x ∈[a,b] 成立 f (t)dt f (x). x
文档格式:PDF 文档大小:162.77KB 文档页数:4
教学目的 本节考虑可积函数的逼近问题. 本节要证明几个关于积分的 逼近定理.主要是关于 Lebesgue 积分的逼近定理. 教学要点 Lebesgue 可积函数可以用比较简单的函数,特别是用连续函数 逼近. 由于连续函数具有较好的性质, 因此 L 可积函数的逼近性质在处理有 些问题时是很有用的.应通过例题和习题掌握这种方法. 设给定一个测度空间 (X , F ,µ), C 是可积函数类 L(µ) 的一个子类. 若对任意可积 函数 f ∈ L(µ) 和ε > 0, 存在一个 g ∈C , 使得 − µ < ε, ∫ f g d 则称可积函数可以用C 中的函数逼近
文档格式:PDF 文档大小:130.17KB 文档页数:3
1. 设 E 是 1 R 中一族(开的、闭的、半开半闭的)区间的并集. 证明 E 是 Lebesgue 可测集. 2. 设 f 是 1 R 上有界的单调增加函数. 证明 f 在 1 R 上几乎处处可导并且 f ′在 1 R 上 L 可积
文档格式:PPT 文档大小:3.55MB 文档页数:79
本章讨论波动方程 utt-a2Au=f 的初值问题和初边值问题.其中,a>0是常数;t>0,x∈2 crn是开集.u=u(x,t)是未知实值函数,f=f(x,t 是已知实值函数△是关于空间变量x=(x1,x2,,xn)的 Laplace(拉普拉斯)算子
文档格式:PDF 文档大小:376.54KB 文档页数:39
1. 在存货永续盘存制下,分别用: ( 1 )个别认定法; ( 2 )平均成本法; ( 3 ) 先进先出法( F I F O );( 4 )后进先出法( L I F O )确定销售成本,并讨论以上 每种方法的优缺点
文档格式:PPT 文档大小:1.17MB 文档页数:28
基本概念 定义与例子 关于未知函数(x1,∞2,……,n)的偏微分方程是形如 F(,, Du, ur,r1,r1T2' (11.1) 的关系式,其中,x=(x1,x2,…,mn),Du=(tx1,ux2 F是关于自变量x和未知函数a及a的有限多个偏微商的已 知函数.F可以不显含未知函数及其自变量x,但必须含有 未知函数的偏微商.涉及几个未知函数及其偏微商的多个偏微分 方程构成一个偏微分方程组.除非另有说明,我们限制自变量 x=(x1,x2,…,xn)取实数值,并设函数a及其出现在方程中 的各阶偏微商连续
文档格式:DOC 文档大小:167KB 文档页数:2
一、填空 1s1 (1)设f(x)=10>1 ,则f[f(x)]= (2)若数列{xn}收敛,则数列{xn}一定 (3)若limf(x)=A,而limg(x)不存在
首页上页3233343536373839下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有