江画工太猩院 第3节 数量积与向量积
江西理工大学理学院 第 3 节 数量积与向量积
江西理工大学理学院 两向量的数量积 实例一物体在常力F作用下沿直线从点M移动 到点M,,以5表示位移,则力F所作的功为 || coS0其中0为F与的夹角) 启示两向量作这样的运算,结果是一个数量. 定义向量a与b的数量积为b b= cos0(其中为与b的夹角)
江西理工大学理学院 一物体在常力Fr 作用下沿直线从点M1移动 到点M2,以sr表示位移,则力Fr 所作的功为 W | F || s | cosθ r r = (其中θ 为Fr 与sr的夹角) 启示 向量ar与br的数量积为a br r ⋅ a b | a || b | cosθ r r r r ⋅ = (其中θ 为ar与b r 的夹角) 实例 两向量作这样的运算, 结果是一个数量. 定义 一、两向量的数量积
江画工太猩院 nb=l‖b|c0s6 b cos0=Prjb, a 8=Pr ja, ∴·b=bPrj= apri,b. 结论两向量的数量积等于其中一个向量的 模和另一个向量在这向量的方向上的投影的 乘积 数量积也称为“点积”、“内积
江西理工大学理学院 a r b r θ a b | a || b | cosθ r r r r ⋅ = | b | cos Pr j b, a r r Q θ = | a | cos Pr j a, b r r θ = a b b jbar r r r ∴ ⋅ =| | Pr | a | Pr j b. a r r = 数量积也称为“点积”、“内积”. 结论 两向量的数量积等于其中一个向量的 模和另一个向量在这向量的方向上的投影的 乘积
江画工太猩院 关于数量积的说明 (1)·l 证∵6=0,∴·=l|dic0s6 (2)ab=0→aLb. 证(→):a·b=0,≠0,b≠0 cos6=0,=π,:l⊥b. (=):l⊥b,:6= c0s6=0 lb=l‖b|c0s6=0
江西理工大学理学院 关于数量积的说明: ( 2 ) a ⋅ b = 0 r r ⇐ ⇒ a b . r r ⊥ ( ⇒ ) a ⋅ b = 0 , r r Q | a |≠ 0 , r | b |≠ 0 , r ∴cos θ = 0 , a b . r r ∴ ⊥ ( 1 ) | | . 2 a a a r r r ⋅ = ( ⇐ ) a b , r r Q ⊥ ∴cos θ = 0 , a ⋅ b =| a || b | cos θ = 0 . r r r r Q θ = 0 , | || | cos | | . 2 a a a a a r r r r r 证 ∴ ⋅ = θ = 证 θ = , 2 π , 2 π ∴ θ =
江画工太猩院 数量积符合下列运算规律: (1)交换律:a·b=b·G; (2)分配律:(a+b)C=l+bE; (3)若λ为数:(Aa)·b=a·(1b)=1(a·b), 若、数:()·(b)=y(a.b) 注:1.消去律不成立 即:若a·C=b·c且c≠0,一般推不出a=b 例如·k=0=j且k≠0,但i≠j
江西理工大学理学院 数量积符合下列运算规律: (1)交换律:a b b a ; r r r r ⋅ = ⋅ (2)分配律:( a b ) c a c b c ; r r r r r r r + ⋅ = ⋅ + ⋅ (3)若 为数: λ ( a ) b a ( b ) ( a b), r r r r r r λ ⋅ = ⋅ λ = λ ⋅ 若 、 为数 λ µ :( a ) ( b ) ( a b). r r r r λ ⋅ µ = λµ ⋅ 注:1. 消去律不成立 . 即:若 且 ,一般推不出 a c b c r r r r ⋅ = ⋅ 0 r rc b ≠ a r r = 例如: i k j k r r r r ⋅ = 0 0 = ⋅ r r 且 , k ≠ i j r r 但 ≠
江画猩工式塑辱院 2向量的数量积不具有结合律 即:一般情况下,(a·b)·2≠l·(b·l), 因此,写法ab·c是无意义的. 例如:取a=i,b=2i,=j 则(ab)=2i·i)=2→(ab)·c=2 (b·e)=2(i·j=0→a·(b·c)=0 显然:2j≠0
江西理工大学理学院 2. 向量的数量积不具有结合律. 即:一般情况下, , (a b) c a (b c ) r r r r r r ⋅ ⋅ ≠ ⋅ ⋅ 例如: 因此,写法 是无意义的 a b c . r r r ⋅ ⋅ a i b i c j r r r r r r 取 = , = 2 , = a b i i a b c j r r r r r r r r 则 ( ⋅ ) = 2( ⋅ ) = 2⇒ ( ⋅ )⋅ = 2 ( ) 2( ) 0 ( ) 0 r r r r r r r r b ⋅ c = i ⋅ j = ⇒ a ⋅ b ⋅ c = 2 0 r r 显然: j ≠
江画工太猩院 ia=a i+aj+a, k, b=b, i+bj+b, k n,b=(a,1+a,j+4),+bj+b4) 7=jk=k·i=0. i曰jk=1, jj=k·k ·b=a.b.+a.b.+a.b 数量积的坐标表达式
江西理工大学理学院 a a i a j a k, x y z r r r r = + + b b i b j b k x y z r r r r 设 = + + a ⋅ b = r r (a i a j a k) x y z r r r + + (b i b j b k) x y z r r r ⋅ + + i j k, r r r Q ⊥ ⊥ ∴i ⋅ j = j ⋅ k = k ⋅ i = 0, r r r r r r | i |=| j |=| k |= 1, r r r Q ∴i ⋅ i = j ⋅ j = k ⋅ k = 1. r r r r r r x x y y z z a ⋅ b = a b + a b + a b r r 数量积的坐标表达式
江画工太猩院 nb=l‖b|c0s0→c0s日= l‖b btab tab cos0= r x tb tb 2 .+.+ 两向量夹角余弦的坐标表示式 由此可知两向量垂直的充要条件为 nb<→a、b.+a,b.+a.b.=0
江西理工大学理学院 a b | a || b | cosθ r r r r ⋅ = , | || | cos a b a b r r r r ⋅ ⇒ θ = 2 2 2 2 2 2 cos x y z x y z x x y y z z a a a b b b a b a b a b + + + + + + θ = 两向量夹角余弦的坐标表示式 a⊥b ⇐⇒ r r axbx + ayby + azbz = 0 由此可知两向量垂直的充要条件为
江画工太猩院 例1已知a={1,1,-4},b={1,-2,2},求(1) nb;(2)与b的夹角;(3)正在b上的投影 解(1).b=1·1+1(-2)+(-4)2=-9 tab tab (2)c0s6= 2 2 +a.+ 1b tb. +6 z x 6= (3)a·b= b Praja∴Pr b
江西理工大学理学院 例 1 已知a = {1,1,−4} r ,b = {1,−2,2} r ,求(1) a b r r ⋅ ;(2)ar与br的夹角;(3)ar在 br 上的投影. 解 a br r (1) ⋅ = 1⋅1+ 1⋅(−2) + (−4)⋅ 2 = −9. 2 2 2 2 2 2 (2) cos x y z x y z x x y y z z a a a b b b a b a b a b + + + + + + θ = , 2 1 = − a b b jbar r r r (3) ⋅ =| | Pr 3. | | Pr = − ⋅ ∴ = b a b j ab r r r r ∴θ = . 4 3π
江画工太猩院 例2证明向量c与向量(a·c)b-(b·c垂直 证(ac)b-(bc)dc (a·C)b·c-(b·c)a·c =(c·b)l·c-al =0 I(a·c)b-(b·c)ld⊥C
江西理工大学理学院 例 2 证明向量cr与向量 a c b b c a r r r r r r ( ⋅ ) − ( ⋅ ) 垂直. 证 a c b b c a c r r r r r r r [( ⋅ ) − ( ⋅ ) ]⋅ [(a c )b c (b c )a c] r r r r r r r r = ⋅ ⋅ − ⋅ ⋅ (c b)[a c a c] r r r r r r = ⋅ ⋅ − ⋅ = 0 a c b b c a c r r r r r r r ∴[( ⋅ ) − ( ⋅ ) ]⊥