第六章定积分 (The definite integration) 第十四讲定积分概念及性质 课后作业: 阅读:第六章6.1,6.2:pp158--166 预习:6.3,6.4:6--182 练习pp.66-16:习题6.2:1,(1),(3)23,(1);4,(1)(3)(5) 5,(1),(5) 作业p.166168:习题6.2:1,(5);3,(2)4,(2),(4),(6); 5,(2),(3),(6);6;7. 6-1定积分概念与性质 6-1-1问题引入 一定积分(Riemann)的背景:两个曲型问题。 (1)求曲线所围的面积: 函数f(x)在有界区间[a,b]非负连续,由Ox轴、直线x=a、 x=b(a
文档格式:DOC 文档大小:307.5KB 文档页数:6
第六章定积分 (The definite integration) 第十五讲 Newton-Leibniz-公式与定积分的计算 课后作业: 阅读:第六章6.:pp6--17 预习:6.4,6.5,6:p176-19 练习pp174176习题6.3:1,7,8中的单数序号小题 作业pp.174176:习题6.3:1,(2),(6)2,(2)4;5;7,(4^,(6),(10) (1)8(,114;1;1720 6-3牛顿(Newton)一莱布尼兹(Leibnitz)公式 6-3-1变上限定积分 (一)变上限积分 设f∈Ra,b,x∈[a,b],F(x)=f(t)dt是定义在[a,b]上 a 的一个函数,称之为变上限积分 这里有一个十分重要的结果:变上限积分总是连续函数
文档格式:DOC 文档大小:389.5KB 文档页数:7
第六章常微分方程 附加条件 y(a)=yu,y(b)=y2 称为边值条件( boundary condition) 满足微分方程,并且适合定解条件的解称为微分方程的特解 (special solution) 微分方程的存在唯一性定理 存在唯一性定理:对一阶初值问题:=f(xy ,若二元函数 y(x0) f(x,y)在矩形D={(x,y):x-x0Ay-y0B}连续, 且偏导数(xy存在并有界则存在正数h,使得上述初值问题 在区间[x。-h,x+h上存在有唯一的解 证明思路:
文档格式:DOC 文档大小:515.5KB 文档页数:5
习题讨论 题目: 1,计算I dx ta 2,计算lm=r(mndt,其中Bm为自然数 8,计算J=(11 xax,其中x是x的整数部分 sIn x sIn x 4,一研究l1= dx, dx,p>O的敛散性 x +sinx 5,设f:(-∞+∞)→R,在任何有限区间可积,且有limf(x)=A, 明,Ⅵt,()=「((x+0-f(x)=0 第七章定积分
文档格式:DOC 文档大小:203KB 文档页数:4
第二章多元函数 2-3习题讨论 23-1讨论题 23-2参考解答 习题讨论 题目 )设xn,yn∈R\,且 limx=x, lim y=y,证明 lim(,,,)=(,y) (2)函数f(x,y)=(,列在R\×R\中连续 (二)在长方体T内任取一点M0,是否一定存在一张过点M的平 面∏I,将该长方体恰分成两等份 (三)设集合A,BCR”,证明