点击切换搜索课件文库搜索结果(451)
文档格式:PDF 文档大小:7.98MB 文档页数:7
采用频率为100 Hz的电磁谐振疲劳试验机进行疲劳拉伸试验, 研究了两种应力比(R=0. 1和-1) 对TC4钛合金的超高周疲劳失效机理的影响.结果表明, 两种应力比下的S-N曲线都呈现\双线\型, 但各自表示的意义及失效机理不同.当R=0. 1时, TC4钛合金的疲劳失效形式有两种, 即由加工缺陷诱发的表面失效和内部鱼眼失效, 这两种失效形式都伴随着颗粒平面(Facet) 出现; 而当R=-1时, 仅存在表面失效, 且无Facet的出现.基于断裂力学的讨论可知, 在正应力比及真空环境下, 对应小裂纹扩展的门槛值更低, 更有利于裂纹扩展及Facet的形成. TC4钛合金的整个内部疲劳失效过程及机理可解释为: (1) 滑移线或滑移带在部分α晶粒上的出现; (2) 微裂纹的萌生和接合; (3) 颗粒亮区(GBF) 的形成; (4) 鱼眼的形成; (5) 鱼眼外的失稳裂纹扩展; (6) 最终的瞬时断裂
文档格式:PDF 文档大小:2.89MB 文档页数:10
从钙钛矿晶格结构和器件结构入手,介绍了钙钛矿电池的发展历程,总结了A位,B位及X位的组分调控方法、一步法、两步法及其他成膜方法,形貌控制方法,最后,详细讨论了钙钛矿太阳能电池稳定性的影响因素,光热湿等因素是引起钙钛矿晶体分解,导致电池性能下降的主要原因。最后,稳定性问题已经成为阻碍钙钛矿电池产业化的最大的障碍,介绍了钙钛矿太阳能电池当前稳定性问题的主要解决方案:开发更稳定的钙钛矿结构,开发用于控制晶粒生长的新添加剂,以及选择具有优异性能的空穴传输层和电子传输层
文档格式:PDF 文档大小:1.26MB 文档页数:8
通过Thermo-Calc热力学计算、OM和FE-SEM观察、力学性能和腐蚀性能试验对不同固溶温度下的特超级双相不锈钢进行分析和研究。结果表明:σ相和非平衡氮化物是固溶水冷组织中的主要析出相,当固溶温度低于1050 ℃时,σ相优先沿双相界面析出,显著降低双相不锈钢的冲击韧性;当固溶温度高于1100 ℃,非平衡氮化物开始在铁素体晶粒内部析出,且随着固溶温度的升高,非平衡氮化物析出数量增加。这是由于固溶水冷过程中氮在铁素体中的溶解度快速降低,过饱和的氮来不及扩散到相邻奥氏体中,只能以氮化物的形式析出。随固溶温度升高,铁素体含量增加,奥氏体含量降低,实验钢的强度增加,冲击韧性降低。在1080~1120 ℃之间固溶时,双相比例接近1∶1,S32707特超级双相不锈钢具有优良的综合力学性能和耐晶间腐蚀性能
文档格式:PDF 文档大小:4.24MB 文档页数:27
超重力显著增大两相间的重力差,可用于加速固?液、液?液、液?气高温黏稠混和体的相分离速度;超重力具有定向性,避免搅拌等技术产生的熔体湍流返混,可用于深度脱除金属液中细小夹杂物;超重力条件下固?液界面张力微不足道,可容易实现微孔渗流;超重力条件下进行结晶凝固,按结晶顺序实现固?液分离,可用于制备梯度材料;超重力加速固?液分离,可细化凝固组织晶粒,但对非共晶熔体也易产生宏观偏析。将超重力技术应用于冶金及材料生产过程中,有望解决高温冶金和材料制备的一些难题,如复杂矿冶金渣有价组分的分离提取、冶炼渣中金属液的分离回收、多金属的熔析结晶分离、复杂矿直接还原铁的渣?金分离;在高端金属材料方面,应用超重力技术,有望解决近零夹物金属材料的精炼除杂难题,提高梯度功能材料、金属?陶瓷复合材料、多孔金属材料、器件材料表面电沉积修饰的制造水平。此外,在材料科学研究方面,超重力凝固可作为一种材料基因组高通量制备方法
文档格式:PDF 文档大小:29.61MB 文档页数:15
采用\热旋锻-拉拔\方法制备了直径为φ65 μm、包覆铜层厚度较均匀、表面质量高和界面结合质量良好的铜包铝复合微丝,研究了合理热旋制度、热旋复合成形铜包铝线材的组织和界面结合状态以及中间退火和拉拔对线材组织与性能的影响.结果表明:合理的旋锻制度为旋锻温度350℃,单道次变形量40%,旋锻后形成了动态再结晶组织和厚度为0.7 μm的界面扩散层.复合线材的合理退火工艺参数为350℃/30 min (退火温度350℃、退火时间30 min),该条件下退火后线材延伸率达到最高值35.7%,界面扩散层厚度约为2.1 μm,退火后铜层和铝芯发生再结晶,组织内部形成等轴晶组织.当退火温度超过350℃时,铜层和铝芯晶粒长大,界面扩散层厚度增加,从而导致线材的延伸率下降.将单道次变形量控制在15%~20%,经过粗拉,制备了φ0.96 mm的丝材;粗拉后不进行退火处理,将单道次变形量控制在8%~15%,经过细拉,制备了表面光洁、直径为φ65 μm的复合微丝.在拉拔过程中,铜层和铝芯均出现〈111〉丝织构
文档格式:PDF 文档大小:1.09MB 文档页数:8
以纯Al粉为主要原料,添加Cu单质粉末以及Al-Mg、Al-Si中间合金粉,利用粉末冶金压制烧结方法制备出相对密度98%以上的Al-Mg-Si-Cu系铝合金.研究表明,烧结致密化过程主要分为3个阶段:初始阶段(室温~460℃),坯体内首先形成Al-Mg合金液相,液相中的Mg原子分别扩散至Al或Al-Si粉末中,与Al2O3反应并破除氧化膜,形成Al-Mg-O等化合物;同时,Al-Cu发生互扩散,形成Al2Cu等金属间化合物.第二阶段(460~560℃),Al-Cu、Al-Si液相快速填充颗粒缝隙或孔洞,坯体相对密度显著提高;此阶段的致密化机制主要是毛细管力引起的颗粒重排,以及溶解析出导致的晶界平直化.第三阶段(560~600℃),随温度的升高,液相润湿性提高,晶粒快速长大,使得大尺寸孔洞填充,烧结体基本实现全致密,此阶段的致密化主要由填隙机制控制.在铝合金晶界处发现了MgAl2O4和MgAlCuO氧化物的存在,推测Al粉表面氧化膜的破除机制与合金成分有关.由于Al-Cu液相在Al表面的润湿速率远高于AlN的生长速率,因为在本体系中未发现AlN的存在
文档格式:PDF 文档大小:23.5MB 文档页数:7
《工程科学学报》:新型粉末高温合金多火次等温锻造过程中晶粒细化机制
文档格式:PDF 文档大小:2.17MB 文档页数:8
采用共沉淀法制备了Ni(OH)2前驱体材料,通过高温固相法制备了LiNiO2和B掺杂LiNiO2(B的摩尔分数为1%),利用X射线衍射(XRD)、里特维尔德(Rietveld)精修、扫描电子显微镜(SEM)、恒流充放电测试、循环伏安(CV)和电化学阻抗谱(EIS)对材料的晶体结构、表面形貌和电化学性能进行了系统性表征.XRD和Rietveld精修结果表明,LiNiO2和B掺杂LiNiO2均具有良好的层状结构,B因为占据在过渡金属层和锂层的四面体间隙位而导致掺杂后略微增大材料的晶格参数和晶胞体积,同时增大了LiO6八面体的间距,进而促进锂离子运输.由于掺杂的B的摩尔分数仅为1%,LiNiO2和B掺杂LiNiO2均表现为直径10 μm左右的多晶二次颗粒,且一次颗粒晶粒尺寸没有明显区别.长循环数据表明B掺杂可以有效提高材料的循环容量保持率,经100次循环后,B掺杂样品在40 mA·g−1电流下的容量保持率为77.5%,优于未掺杂样品(相同条件下容量保持率为66.6%).微分容量曲线和EIS分析表明B掺杂可以有效抑制循环过程中的阻抗增长
文档格式:PDF 文档大小:1.69MB 文档页数:12
中锰钢是近年来出现的新型钢铁材料,因为其优异的力学性能被认为是第三代汽车用钢,但是该钢的一个突出特点就是在拉伸变形时会发生塑性失稳,导致材料结构稳定性减弱甚至在某些情况下过早失效,这已然成为限制中锰钢商业化使用的关键问题。塑性失稳包括出现不连续屈服和屈服平台(吕德斯应变)以及流变应力锯齿(PLC效应)。两者都受到成分、晶粒形貌、退火工艺、组织构成等因素的影响,也均与拉伸变形过程中 奥氏体相变转变存在或强或弱的相关性,使得这一塑性失稳现象的机理更为复杂化,因而在近期各种观点迥异的理论解释也相继被提出。本文综述了相关研究中各种因素对吕德斯应变和PLC效应的影响结果及相关理论解释,并着重指出了各理论解释的局限性及未来的研究思路。最后,基于现有研究和预研实验对在保证中锰钢超高强度和优良塑性的前提下消除中锰钢塑性失稳现象的可行途径进行了展望
文档格式:PDF 文档大小:1.55MB 文档页数:11
回转窑结圈一直以来是制约煤基回转窑直接还原工艺发展的重要因素,以某低品位铁矿回转窑还原结圈物为研究对象,深入研究回转窑结圈物的特性及其形成机制.从结圈物的宏观形貌、物化性能、软熔特性和微观结构入手对某低品位铁矿球团回转窑结圈物的特性进行分析,并结合热力学相图、化学物相及能谱分析研究了结圈物的形成机制.结果表明:结圈物由熔融物包裹球团形成,接近窑壁,其熔融包裹物增多,结圈物中MFe、CaO含量明显增大,软熔温度越低;由球团粉末中FeO与SiO2形成的铁橄榄石及煤灰带入的CaO而形成的钙铁辉石低熔点相是造成结圈的主要原因;低熔点相的存在同时也促进了金属化球团间铁晶粒的相互扩散与迁移,从而加剧了结圈现象
首页上页3738394041424344下页末页
热门关键字
搜索一下,找到相关课件或文库资源 451 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有