在数学分析课程中我们已经熟悉 Riemann积分.在处理连续函数或者逐段连续函数 时,在计算一些几何和物理的量时它是很有用的但它也存在一些缺陷例如, Riemann积 分对被积函数的要求较高,它要求被积函数“基本上”是连续的(其确切含义将在§4.4 讨论),在处理极限与积分交换次序时,需要对函数列加上一致收敛性的条件等由于这些 缺陷,使得 Riemann积分在处理分析数学中的一些问题时显得不够有力因此需要建立 新的积分的理论.二十世纪初, Lebesgue建立了一种新的积分理论新的积分理论消除了 上述缺陷,并且包含了原有的 Riemann积分理论