点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:615KB 文档页数:23
微分法在几何上的应用 一、空间曲线的切线和法平面 定义设M是空间曲线L上的一个定点,M是L上的一个动点,当M*沿曲线L趋于M时,割线MM*的极限位置MT(如果极限存在)称为曲线L在M处的切线下面我们来导出空间曲线的切线方程
文档格式:PDF 文档大小:370.4KB 文档页数:22
1.按通常数的加法与乘法,下列集合是否构成实数域R上的线性空间? (1)整数集Z:(2)有理数集Q;(3)实数集R;(4)复数集C
文档格式:PPT 文档大小:615KB 文档页数:23
微分法在几何上的应用 一、空间曲线的切线和法平面 定义设M是空间曲线L上的一个定点,M是 L上的一个动点,当M*沿曲线L趋于M 时,割线MM*的极限位置MT(如果极 限存在)称为曲线L在M处的切线 下面我们来导出空间曲线的切线方程
文档格式:DOC 文档大小:962.5KB 文档页数:15
适当时,可以使同一类模式的特征点在特征空间中某个子区域内分布,另一类模式的特征点 在另一子区域分布(例如苹果和橙子的问题)。这样,我们就可以用空间中的一些超曲面将 特征空间划分为一些互不重叠的子区域,使不同模式的类别在不同的子区域中。这些超曲面 称为判别界面,可以用一个方程来表示:
文档格式:PDF 文档大小:157.28KB 文档页数:5
我们知道 Riemann积分的几何意义是曲边梯形的面积.为在欧氏空间空间R上推 广 Riemann积分的理论,我们必须把象长度,面积和体积等概念推广到R”中的更一般的 集上去.本章将要定义的R上的 Lebesgue测度就是长度,面积和体积等概念推广由于 现代数学的许多分支需要,我们将在一般的空间上建立测度与积分的理论
文档格式:PPT 文档大小:881.5KB 文档页数:38
一、空间曲面及其方程 由上节知,空间平面对应于一 个三元一次方程:
文档格式:PPT 文档大小:752KB 文档页数:65
一、几何空间中向量的内积 1. 空间向量及两向量的夹角 (回顾) 实际问题中, 既有大小又有方向的物理量称为向量
文档格式:PDF 文档大小:124.5KB 文档页数:3
在以下各题中,可测集,可测函数和测度,除题目中已有说明的外,都是关于某一给定的可测空间(X,)或测度空间(X,,μ)的 1.试分别给出具有如下性质的可测空间(X,) (1)X上的每个函数都是可测的 (2)只有常数函数是可测的
文档格式:PDF 文档大小:174.4KB 文档页数:9
在给定了一个测度空间以后,由定义在这个空间上的一个函数可以自然地产生出各 种各样的集.为用测度论的方法研究这个函数我们自然要求这些集是可测的.由此产生 了可测函数的概念在定义积分时候,对被积函数的一个基本要求就是这个函数必须是可 测的我们将看到可测函数是一类很广泛的函数.特别地,欧氏空间R上的 Lebesgue可 测函数是比连续函数更广泛的一类函数.而且可测函数类对极限运算是封闭的,这将使我 们在讨论积分的时候更加便利
文档格式:DOC 文档大小:725.5KB 文档页数:14
第十九讲第二型空间曲面积分 Gauss公式 5-4-1第二型曲面积分 5-4-2 Gauss公式 课后作业: 课后作业: 阅读:第五章第四节:第二型曲面积分pp.165-172 预习:第五章第五节: Gauss公式和 Stokes公式pp.173-181 作业:习题4:pp172--173:1,(2),(3,(4),(6,(8),(10),(12) 习题5:p.181--182:1,(1),(3),(5),(7);2;3,(3) 5-4第二型曲面积分、 Gauss公式 本节专门讨论空间向量场
首页上页4142434445464748下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有