点击切换搜索课件文库搜索结果(4700)
文档格式:PPT 文档大小:1.68MB 文档页数:47
1、罗尔中值定理 罗尔(Rolle)定理如果函数f(x)在闭区间 a,b]上连续,在开区间(a,b)内可导,且在区间端 一点的函数值相等,即f(a)=f(b),那末在(a,b) 内至少有一点E(a<
文档格式:DOC 文档大小:333KB 文档页数:4
一、单项选择题(每小题3分,共30分) 1.y\+2y+y=e- sinx的特解形式可设为(C) (A)Ae-sinx; (B)Ax2e-*sinx: (C)e-x(Asinx+ Bcosx): (D) Ax2(sinx+ cosx)
文档格式:PDF 文档大小:4.83MB 文档页数:57
本章中我们将用前面学过的定积分的知识来分析和解决一些几何、物理中的问题,其目的不仅是建立计算这些几何、物理的公式,而且更重要的还在于介绍运用元素法解决问题的定积分的分析方法
文档格式:PPT 文档大小:1.14MB 文档页数:115
8.1图的定义及相关术语 8.2通路回路图的连通性 8.3图的矩阵表示 8.4例题选解
文档格式:PPT 文档大小:3.05MB 文档页数:351
4.1序偶与笛儿积4,7序关系 4.2关系及表示 4.3关系的运算 4.4关系的性质 4.5关系的闭包
文档格式:DOC 文档大小:891KB 文档页数:29
矩阵概念的一些背景 在线性方程组的讨论中,我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解线性方程组的过程也表现为变换这些 矩阵的过程除了线性方程组之外,还有大量的各种各样的问题也都提出矩阵的概念,并且这些问题的研究常常反映为有关矩阵的某些方面的研究,甚至于有 些性质完全不同的、表面上完全没有联系的问题,归结成矩阵问题以后却是相 同的这使矩阵成为数学中一个极其重要的应用广泛的概念,因而也就使矩阵成 为代数特别是线性代数的一个主要研究对象
文档格式:PPT 文档大小:4.89MB 文档页数:300
第一节 常数项级数的概念 一、问题的提出 二、级数的概念 三、基本性质 四、收敛的必要条件 第二节 常数项级数的审敛法 一、正项级数及其审敛法 二、交错级数及其审敛法 三、绝对收敛与条件收敛 第三节 幂级数 一、函数项级数的一般概念 二、幂级数及其收敛性 三、幂级数的运算 第四节 函数展开成幂级数 一、泰勒级数 二、函数展开成幂级数 第五节 函数的幂级数展开式的应用 一、近似计算 二、计算定积分 三、求数项级数的和 四、欧拉公式 第六节 函数项级数的一致收敛性、一致收敛级数的基本性质 第七节 傅里叶级数 一、问题的提出 二、三角级数 三角函数的正交性 三、函数展开成傅里叶级数 第八节 正弦级数与余弦级数 一、奇函数和偶函数的傅里叶级数 二、函数展开成正弦级数或余弦级数 第九节 周期为2L的周期函数傅里叶级数 一、以2L为周期的傅氏级数 二、典型例题 第十节 傅里叶级数的复数形式
文档格式:DOC 文档大小:109KB 文档页数:14
设fx)是定义在闭区间[ab]上的连续函数,如果x∈[ab]使 得f(x)=0则称x是fx)的一个零点 从几何图形看,函数f(x)的零点就是曲线y=f(x)与x轴的交 点。这个事实对我们求数值解很有启发作用 提示:函数f)的零点其实也就是(非线性)方程fx)=0的 解,所以求函数的零点问题也就是非线性方程求解的问题。 结论:由高等数学中的界值定理可知,若fa)f(b)<0,方程 f(x)=0在[ab内一定有解 求函数零点的方法有对分法,牛顿法和不动点算法
文档格式:PDF 文档大小:16.8MB 文档页数:233
第一节对弧长的曲线积分 一、对弧长的曲线积分的概念与性质 二、对弧长的曲线积分的计算法 三、小结 第二节对坐标的曲面积分 一、对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算方法 三、两类曲面积分之间的关系 第三节格林公式及其应用 一、格林公式 二、平面上曲线积分与路径无关的条件 三、二元函数的全微分求积 四、曲线积分的基本定理 第四节对面积的曲面积分 一、概念的引入 二、对面积曲面积分的概念与性质 三、对面积曲面积分的计算方法 第五节对坐标的曲面积分 三、两类曲面积分之间的关系 第六节高斯公式通量与散度 一、高斯公式 二、简单应用 三、物理意义——通量与散度 第七节 斯托克斯(Stokes)公式环流量与旋度 一、斯托克斯公式 三、环流量与旋度
文档格式:PDF 文档大小:10.33MB 文档页数:137
第一节微分方程的基本概念 (Basic concept of differential equations) 一问题的提出 二微分方程的定义 (Definition of differential equations) 三 主要问题——求方程的解 四 小结思考判断题 第二节可分离变量的微分方程 (Differential equations of the variables separated) 可分离变量的微分方程 二 典型例题 小结与思考题 第三节齐次方程 (Homogeneous equation) 一齐次方程 二可化为齐次的方程 三小结思考题 第四节一阶线性微分方程 (Linear differential equation of first order) 一线性方程 (Linear differential equation) 二伯努利方程 (Bernoulli differential equation) 小结 思考判断题 第五节全微分方程 (Total differential equation) -全微分方程及其求法 二积分因子法 小结与思考题 第六节可降阶的高阶微分方程 y(\=f(x,y,..,y(\-)型 二y\=f(x,y',.·,y(\-①)型 恰当导数方程 四齐次方程 五小节与思考题 第七节高阶线性微分方程 (Higher linear differential equation) 概念的引入 线性微分方程的解的结构 降阶法与常数变易法 四小结思考题 第八节常系数齐次线性微分方程 (Constant coefficient homogeneous linear differential equation) 一定义(Definition) 二二阶常系数齐次线性方程解法 三n阶常系数齐次线性方程解法 四小结与思考题 第九节常系数非齐次线性微分方程 (Constant coefficient non-homogeneous linear differential equation) 一f(x)=exPm(x)型 二f(x)=ex[P,(x)cos cax+P,(x)sin cax]型 三小结思考题
首页上页463464465466467468469470
热门关键字
搜索一下,找到相关课件或文库资源 4700 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有