点击切换搜索课件文库搜索结果(4914)
文档格式:PPT 文档大小:618.5KB 文档页数:19
一、反函数的导数 定理 x = (y) I , (y)  0 如果函数  在某区间 y内单调、可导 且即 反函数的导数等于直接函数导数的倒数.那末它的反函数 ( )在对应区间 内也可导
文档格式:DOC 文档大小:284KB 文档页数:5
第八章常微分方程 第一节常微分方程的基本概念与分离变量法 思考题: 1.微分方程通解中的任意常数C最终可表为e,sinC2(C1,C2为任意实数) InC3(C3为实数,C3>0)等形式吗? 答:不能表示为e,sinC2,能表示为lnC,因为e只能取到(0,+∞)内的所有实
文档格式:PPT 文档大小:2.84MB 文档页数:170
第一节 导数的概念 第二节 函数的和、差、积、商的求导法则 一、和、差、积、商的求导法则 二、例题分析 三、小结 第三节 反函数与复合函数的求导法则 一、反函数的导数 二、复合函数的求导法则 三、小结 第四节 初等函数的求导问题 双曲函数与反双曲函数的导数 一、初等函数的求导问题 二、双曲函数与反双曲函数的导数 三、小结 第五节 高阶导数 一、高阶导数的定义 二、 高阶导数求法举例 三、小结 第六节 隐函数的导数由参数方程所确定的函数的导数相关变化率 一、隐函数的导数 二、对数求导法 三、由参数方程所确定的函数的导数 四、相关变化率 五、小结 第七节 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、微分形式的不变性 七、小结 第八节 微分在近似计算中的应用 一、计算函数增量的近似值 二、计算函数的近似值 三、误差估计 四、小结
文档格式:PDF 文档大小:184.19KB 文档页数:8
在数学分析课程中我们已经熟悉 Riemann积分.在处理连续函数或者逐段连续函数 时,在计算一些几何和物理的量时它是很有用的但它也存在一些缺陷例如, Riemann积 分对被积函数的要求较高,它要求被积函数“基本上”是连续的(其确切含义将在§4.4 讨论),在处理极限与积分交换次序时,需要对函数列加上一致收敛性的条件等由于这些 缺陷,使得 Riemann积分在处理分析数学中的一些问题时显得不够有力因此需要建立 新的积分的理论.二十世纪初, Lebesgue建立了一种新的积分理论新的积分理论消除了 上述缺陷,并且包含了原有的 Riemann积分理论
文档格式:PPT 文档大小:451KB 文档页数:27
曲线积分与曲面积分 前一章我们已经把积分概念从积分范围的角度 从数轴上的一个区间推广到平面或空间内的一个 区域,在应用领域,有时常常会遇到计算密度不 均匀的曲线的质量、变力对质点所作的功、通过 某曲面的流体的流量等,为解决这些问题,需要 对积分概念作进一步的推广,引进曲线积分和曲 面积分的概念,给出计算方法,这就是本章的中 心内容,此外还要介绍 Green公式、 Gauss公 式和 Stokes公式,这些公式揭示了存在于各 种积分之间的某种联系
文档格式:PPT 文档大小:452.5KB 文档页数:21
一、入一矩阵的初等变换 二、入矩阵的初等矩阵 三、等价入矩阵 四、入一矩阵的对角化
文档格式:DOC 文档大小:75KB 文档页数:1
第六章6-2欧氏空间中特殊的线性变换(续) 命题正交矩阵的特征多项式的根的绝对值等于1证明设入∈C是正交矩阵A的特征多项式的根,则≠0.齐次线性方程组(e-a)X=0在C内有非零解向量
文档格式:DOC 文档大小:75KB 文档页数:1
命题正交矩阵的特征多项式的根的绝对值等于1 证明设入∈C是正交矩阵A的特征多项式的根,则≠0.齐次线性方程组(e-a)X=0 在C内有非零解向量
文档格式:DOC 文档大小:162KB 文档页数:2
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.2子空间与商空间 4.2.4 子空间的直和与直和的四个等价定义 4.2.5 直和因子的基与直和的基 4.2.6 补空间的定义及存在性
文档格式:PPT 文档大小:667.5KB 文档页数:42
曲面及其方程 一、曲面方程的概念 曲面的实例:水桶的表面、台灯的罩子面等. 曲面在空间解析几何中被看成是点的几何轨迹. 曲面方程的定义: 如果曲面S与三元方程F(x,y,)=0有下述关系: (1)曲面S上任一点的坐标都满足方程; (2)不在曲面S上的点的坐标都不满足方程; 那么,方程F(x,y,)=0就叫做曲面S的方程, 而曲面S就叫做方程的图形
首页上页479480481482483484485486下页末页
热门关键字
搜索一下,找到相关课件或文库资源 4914 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有