点击切换搜索课件文库搜索结果(503)
文档格式:PPT 文档大小:445KB 文档页数:26
一、在柱坐标系下的计算法 个数 就叫点 的柱面坐标. 面上的投影 的极坐标为 ,则这样的三 设 为空间内一点,并设点 在 r z M
文档格式:PPT 文档大小:445KB 文档页数:26
一、在柱坐标系下的计算法 设M(x,y,z为空间内一点,并设点M在xoy面上的投影P的极坐标为r,0,则这样的三个数r,0,z就叫点M的柱面坐标
文档格式:PPT 文档大小:445KB 文档页数:26
一、在柱坐标系下的计算法 设M(x,y,z为空间内一点,并设点M在xoy面上的投影P的极坐标为r,0,则这样的三个数r,0,z就叫点M的柱面坐标
文档格式:PPT 文档大小:631KB 文档页数:32
Gauss公式 一、 Gauss公式 前面我们将 Newton-Lebniz-公式推广到了平面 区域的情况,得到了 Green公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green公式做进一步推广,这 就是下面将要介绍的 Gauss公式, Gauss公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时 Gauss公式也是计算曲面积分的一 有效方法
文档格式:PPT 文档大小:941.5KB 文档页数:14
一、二次点列上的射影对应 总假定:所论二次曲线非退化. 仅讨论二阶曲线 定义4.12 二阶曲线上全体 点的集合称为一个二次点列,  称为这点列的底
文档格式:PPT 文档大小:456KB 文档页数:16
上一节我们定义了向量组的秩,如果把矩阵的每一行看成 一个向量,那么矩阵就是由这些行向量组成的。同样,如果把 矩阵的每一列看成一个向量,则矩阵也可以看作是由这些列向 量组成的。 定义3.4.1所谓矩阵的行秩是指矩阵的行向量所组成的 向量组的秩,矩阵的列秩是由矩阵列向量所称向量组的秩
文档格式:PPT 文档大小:582KB 文档页数:33
Stokes公式 一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式。 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:PDF 文档大小:158.17KB 文档页数:6
宇宙万物之间都存在相互的引力,其作用方向在 两者的连线上,其大小与两者质量的乘积成正比而和 两者距离的平方成反比。比例系数是绝对常数 为了推导内在的定量关系即数学规律,先要将行星运动定律 用数学形式表达出来
文档格式:PPT 文档大小:422KB 文档页数:14
一、多项式的概念 中学多项式的定义:n个单项式(不含加法或减 法运算的整式)的代数和叫多项式。 例:4a+3b,3x2+2x+1,y- 在多项式中,每个单项式叫做多项式的项。这是 形式表达式。 后来又把多项式定义为R上的函数:
文档格式:DOC 文档大小:891KB 文档页数:29
矩阵概念的一些背景 在线性方程组的讨论中,我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解线性方程组的过程也表现为变换这些矩阵的过程除了线性方程组之外,还有大量的各种各样的问题也都提出矩阵的概念,并且这些问题的研究常常反映为有关矩阵的某些方面的研究,甚至于有些性质完全不同的
首页上页4445464748495051下页末页
热门关键字
搜索一下,找到相关课件或文库资源 503 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有