点击切换搜索课件文库搜索结果(632)
文档格式:PDF 文档大小:1.09MB 文档页数:53
连续时间马氏链 仍记状态空间为S={0,1,2,…} 定义设随机过程X={X(t),t≥0}对于任意0≤to0就有 P{(tn+1)=in+1(to) io, X (t1) =i1,.,()= in} =P{X(tn+) in+()= in} 则称{X(t),t≥0}为连续参数马尔可夫链(简称连续参数马氏链)
文档格式:DOC 文档大小:647KB 文档页数:12
第十章多元函数微分学 第一节多元函数的极限及连续性 思考题: 1.将二元函数与一元函数的极限、连续概念相比较,说明二者之间的区别 答:二元函数与一元函数的极限都是表示某动点P以任意方式无限靠近定点时,与 之相关的一变量无限接近于一个确定的常数,不同的是后者对应P,Q点是数轴上的点, 前者对应的P,Q是平面上的点
文档格式:PPT 文档大小:597.5KB 文档页数:32
第三章随机变量及其分布 3-4随机变量的独立性 设(X,Y)是二维随机变量,其联合分布函数为 F(x,y),又随机变量X的分布函数为F(x) 随机变量Y的分布函数为F(y)如果对于任意 的x,y,有 F(x, y)=Fx(x).Frl 则称X,Y是相互独立的随机变量
文档格式:PPT 文档大小:136.5KB 文档页数:35
附录2数域命题量词 1数域 一个含有数0,1的数集F,如果其中任意两个数关于数的四则运算封闭除法的除数不为零),即它们的和,差,积,商仍是F中的数,则数集F就称为一个数域
文档格式:PPT 文档大小:271.5KB 文档页数:53
1.复数列的极限设{an}(n=12)为一复数列 ,其中an=an+ibn,又设a=a+ib为一确定的复数 如果任意给定ε0,相应地能找到一个正数 N(a),使|an-aN时成立,则a称为复数 列{an}当n→∞时的极限,记作 linn =a
文档格式:PDF 文档大小:158.46KB 文档页数:23
定义3.1设D是一个n阶行列式在D中 任意选定k个行,k个列(1≤k≤n) ( 1)这些行、列相交处的元素按其原有的 工 相对位置就构成一个k阶行列式M, 称为D的一个k阶子式; (2)这些行、列以外的元素按其原有的相 对位置就构成一个n-k阶行列式M 称为M的余子式;记为M
文档格式:DOC 文档大小:327KB 文档页数:7
4.3向量组的秩与最大无关组 1.向量组的秩:设向量组为T,若 (1)在T中有r个向量a1,a2,…,a,线性无关; (2)在T中有r+1个向量线性相关(如果有r+1个向量的话) 称a1,a2,…,a,为向量组为T的一个最大线性无关组, 称r为向量组T的秩,记作:秩(T)=r 注](1)向量组中的向量都是零向量时,其秩为0 (2)秩(T)=r时,T中任意r个线性无关的向量都是T的一个 最大无关组
文档格式:PDF 文档大小:134.23KB 文档页数:5
一.(本题20分)设K为数域.给定K4的两个子空间 M={(x1,2,3,4)|21-x2+4x3-3x4=0,x1+x3-x4=0 N={1,x2,x3,4)3x1+x2+x3=0,7x1+7x3-3x4=0} 求子空间MN和M+N的维数和一组基 二(本题10分)在K4内给定 a1=(1,-1,1,1),a2=(2,-2,0,1). 令M=L(a1,a2).试求商空间K4/M的维数和一组基 三.(本题20分)给定数域K上的3阶方阵 1-11 A=24-2 3-35 1.求K上的3阶可逆方阵T,使T-1AT为对角矩阵 2.对于任意正整数m,求Am
文档格式:DOC 文档大小:251.5KB 文档页数:3
5.1.3线性空间上的对称双线性函数、二次型函数的定义 定义若f为V上的双线性函数且f(a,B)=f(B,a),则称f为V上的对称双线性 函数。 命题f为对称双线性函数,当且仅当f在任意一组基下的矩阵为对称矩阵,当且仅 当f在某一组基下的矩阵为对称矩阵。 证明任取V的一组基1,2,…,n,任取a,B∈V,设它们在此组基下的坐标所构成 的列向量分别为X和Y,f在此组基下的矩阵记为A,若f为对称双线性函数,则由定
文档格式:DOC 文档大小:384KB 文档页数:8
1:若方程y+p(x)y=0的一个特解为y=cos2x则该方程满足初值条件y(0)=2的 特解为() A cos 2x+2 B cos 2x+1 C2 coS x cos 2X 答案D 解:将y=cos2x代入方程求出函数p(x)再求解方程得到正确答案为D.也可以作 如下分析一阶线性齐次方程 y+p(x)y=0任意两个解只差一个常数因子所以A,B,C三个选项都不是该方程的解 2微分方程“卫
首页上页4748495051525354下页末页
热门关键字
搜索一下,找到相关课件或文库资源 632 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有