点击切换搜索课件文库搜索结果(565)
文档格式:DOC 文档大小:214.5KB 文档页数:2
命题如果n维空间V上的线性变换A的矩阵相似于对角矩阵,则A在任一不变子空 间M上(的限制)的矩阵相似于对角矩阵。 证明若V上的线性变换A的矩阵相似于对角矩阵,则V可以分解为特征子空间的直 和。记A的所有特征值为,2,2,则V=V4V,取M=nV, 断言M=M1M2⊕M,首先要证明
文档格式:DOC 文档大小:251.5KB 文档页数:3
5.1.3线性空间上的对称双线性函数、二次型函数的定义 定义若f为V上的双线性函数且f(a,B)=f(B,a),则称f为V上的对称双线性函数
文档格式:DOC 文档大小:285KB 文档页数:3
设A是n维酉空间V内的线性变换,如果V内的线性变换A满足a,BV,有 (Aa, B)=(a, B) 则称A是A的共轭变换.A为A的共轭变换当且仅当它们在标准正交基下的矩阵互为共轭 转置. 共轭变换的五条性质:
文档格式:PPT 文档大小:364.5KB 文档页数:18
一、集合 把一些事物汇集到一起组成的一个整体就叫做集合; 常用大写字母A、B、C 等表示集合; 当a是集合A的元素时,就说a 属于A,记作:
文档格式:PDF 文档大小:6.78MB 文档页数:190
§5.1 二次型及其矩阵表示 §5.2 标准型 §5.3 唯一性 §5.4 正定二次型 §6.1 集合、映射 §6.2 线性空间的定义与简单性质 §6.3 维数、基与坐标 §6.4 基变换与坐标变换 §6.5 线性子空间 §6.6 子空间的交与和 §6.7 子空间的直和 §6.8 线性空间的同构 §9.1 定义与基本性质 §9.2 标准正交基 §9.3 同构 §9.4 正交变换 §9.5 子空间 §9.6 实对称矩阵的标准型
文档格式:PPT 文档大小:275KB 文档页数:18
定义11:设o是Vn(F)上的线性变换,若对 入∈F,存在非零向量,使得5=5 则称是线性变换σ的一个特征值, 5是的属于特征值的特征向量
文档格式:DOC 文档大小:81.5KB 文档页数:3
一、初等因子的概念 定义7把矩阵A(或线性变换A)的每个次数大于零的不变因子分解成互 不相同的一次因式方幂的乘积,所有这些一次因式方幂(相同的必须按出现的次 数计算)称为矩阵A(或线性变换A)的初等因子 例设12级矩阵的不变因子是
文档格式:DOC 文档大小:924KB 文档页数:25
一、集合 集合是数学中最基本的概念之一,所谓集合就是指作为整体看的一堆东西 组成集合的东西称为这个集合的元素用 a∈M 表示a是集合M的元素,读为:a属于M用 a∈M 表示a不是集合M的元素,读为:a不属于M 所谓给出一个集合就是规定这个集合是由哪些元素组成的因此给出一个集 合的方式不外两种,一种是列举法:列举出它全部的元素,一种是描述法:给出这个集合的元素所具有的特征性质
文档格式:PDF 文档大小:368.72KB 文档页数:25
1.设向量β可由向量组a1,a2,……,as线性表示,但不能由a1,a2,…,a-1线性表示证明:向量
文档格式:PPT 文档大小:173.5KB 文档页数:6
一、向量空间的定义和例子 向量与向量空间对我们并不陌生,在解几中,我们已经讨 论过二维和三维向量空间中的向量。 在那里,两个向量相加可以按平行四边形法则相加,若向 量用坐标表示,则两个向量相加转化为对应坐标相加,数与向 量相乘变为数与向量的每个坐标相乘,由此可抽象出一般向量 的定义
首页上页4950515253545556下页末页
热门关键字
搜索一下,找到相关课件或文库资源 565 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有