点击切换搜索课件文库搜索结果(772)
文档格式:DOC 文档大小:283.5KB 文档页数:7
第六节隐函数的导数、由参数方程所确定的函数的导数、相关变化率 1.隐函数求导法则:直接对方程两边求导 2.对数求导法:对方程两边取对数按隐函数的求导法则求导 3.参数方程求导:实质上是利用复合函数求导法则 4.相关变化率:通过函数关系确定两个相互依赖的变化率
文档格式:PPT 文档大小:981.5KB 文档页数:33
实例:一块长方形的金属板,四个顶点的坐标是 (1,1),(5,1),(1,3),(5,3).在坐标原点处有一个火 焰,它使金属板受热.假定板上任意一点处的温 度与该点到原点的距离成反比.在(3,2)处有一个 蚂蚁,问这只蚂蚁应沿什么方向爬行才能最快到 达较凉快的地点? 问题的实质:应沿由热变冷变化最骤烈的方 向(即梯度方向)爬行.
文档格式:PPT 文档大小:718.5KB 文档页数:33
这一节我们将把这一求导法则推广到多元函 数的情形,主要介绍多元复合函数的微分法和隐 函数的微分法。我们知道,求偏导数与求一元函 数的导数本质上并没有区别,对一元函数适用的 微分法包括复合函数的微分法在内,在多元函数 微分法中仍然适用,那么为什么还要介绍多元
文档格式:PPT 文档大小:981.5KB 文档页数:33
方向导数与梯度 实例:一块长方形的金属板,四个顶点的坐标是 1,1),(5,1),(1,3),(5,3).在坐标原点处有一个火 焰,它使金属板受热.假定板上任意一点处的温 度与该点到原点的距离成反比.在(3,2)处有一个 蚂蚁,问这只蚂蚁应沿什么方向爬行才能最快到 达较凉快的地点?
文档格式:DOC 文档大小:143KB 文档页数:3
2.1.4向量组的线性等价和集合上的等价关系 定义(线性等价)给定Km内的两个向量组
文档格式:PPT 文档大小:419KB 文档页数:20
前面讲了单调性、极值、最值、凹凸性。 我们知道凹凸性反映的是曲线的弯曲方向,但 是朝同一方向弯曲的两条曲线,其弯曲的程度 也不尽相同。曲率就是表征弯曲程度的量,它 等于单位路程上方向(角度——切线的倾斜角) 的改变量
文档格式:PPT 文档大小:422KB 文档页数:20
前面讲了单调性、极值、最值、凹凸性。 我们知道凹凸性反映的是曲线的弯曲方向,但 是朝同一方向弯曲的两条曲线,其弯曲的程度 也不尽相同。曲率就是表征弯曲程度的量,它 等于单位路程上方向(角度切线的倾斜角) 的改变量
文档格式:PPT 文档大小:422KB 文档页数:20
曲率 前面讲了单调性、极值、最值、凹凸性。 我们知道凹凸性反映的是曲线的弯曲方向,但 是朝同一方向弯曲的两条曲线,其弯曲的程度 也不尽相同。曲率就是表征弯曲程度的量,它 等于单位路程上方向(角度切线的倾斜角) 的改变量
文档格式:PPT 文档大小:565KB 文档页数:29
其它展开 一、周期为2L的周期函数展开成 Fourier级数 前面我们所讨论的都是以2为周期的函数 展开成 Fourier级数,但在科技应用中所遇到的 周期函数大都是以T为周期,因此我们需要讨论 如何把周期为T=2l的函数展开为 Fourier级数 若f(t)是以T=2l为周期的函数,在[-l,l) 上满足 Dirichlet条件
文档格式:PPT 文档大小:367.5KB 文档页数:15
上一节我们利用行列式的性质把一个行列式化为上三角 或下三角行列式,然后根据定义算出行列式的值,或者把一 个行列式化成其中含有尽量多个零的行列式,然后算出行列 式的值。本节我们沿着另一条思路来计算行列式的值,即通 过把高阶行列式转化为低阶行列式来计算行列式的值
首页上页5556575859606162下页末页
热门关键字
搜索一下,找到相关课件或文库资源 772 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有