点击切换搜索课件文库搜索结果(304)
文档格式:PDF 文档大小:112.13KB 文档页数:9
定义 10.5.1 设函数 f (x)在闭区间[a, b]上有定义,如果存在多项 式序列{Pn (x)}在[a, b] 上一致收敛于 f (x),则称 f (x)在这闭区间上 可以用多项式一致逼近。 应用分析语言,“f (x)在[a, b]上可以用多项式一致逼近”可等价 表述为:
文档格式:PPT 文档大小:969.5KB 文档页数:47
Tavlor公式 多项式是一类很重要的函数,其明显特点是结构 简单,因此无论是数值计算还是理论分析都比较方便 从计算的角度看,只须加、减、乘三种运算,连除法 都不需要,这是其它函数所不具备的优点。 用多项式近似地表示给定函数的问题不仅具有实 用价值,而且更具有理论价值。一般的函数不好处理 先用较好处理的多项式近似替代,然后通过某种极限 手续再过渡到一般的函数。 “以直代曲”就是用一次多项式去近似给定函数
文档格式:DOC 文档大小:229KB 文档页数:4
北京大学:《高等代数》课程教学资源(讲义)第十二章 张量积与外代数 12.3.2 用一个多项式的根和另一个多项式计算结式的公式 12.3.3 用一个多项式与它的微商的结式表达该多项式的判别式
文档格式:DOC 文档大小:90.5KB 文档页数:2
一、 复系数多项式因式分解定理 代数基本定理 每个次数  1 的复系数多项式在复数域中有一个根. 利用根与一次因式的关系,代数基本定理可以等价地叙述为:
文档格式:PPT 文档大小:752.5KB 文档页数:32
用插值的方法对一函数进行近似,要求所得到的 插值多项式经过已知插值节点;在n比较大的情 况下,插值多项式往往是高次多项式这也就容 易出现振荡现象(龙格现象),即虽然在插值 节点上没有误差,但在插值节点之外插值误差变 得很大,从“整体”上看,插值逼近效果将变得“很 差”。 所谓数据拟合是求一个简单的函数,例如是一个 低次多项式,不要求通过已知的这些点而是要 求在整体上“尽量好”的逼近原函数。这时,在每 个已知点上就会有误差,数据拟合就是从整体上 使误差,尽量的小一些
文档格式:DOC 文档大小:245.5KB 文档页数:3
9-3实系数多项式根的分布 9.3.1复系数多项式的根的绝对值的上界 命题设f(x)=axn+a1xn+…+an∈C[x],其中a≠0而n≥1。令 a=max{ 则对f(x)的任一复根a,有|ak1+A/a 证明如果A=0,则a=0,命题成立。下面设A>0 如果|a1+A/a,那么,因为f(a)=0,故有 la Haa++aa a+…+an ≤A(ar-++1)=a(la--1)/(a-1) 现在|a>1,故从上式立刻得到 la a\ Ala\ /(al-1) 两边消去|a,得|ak1+A/a|,矛盾
文档格式:DOC 文档大小:160.5KB 文档页数:3
多项式的性质 利用带余除法我们得到下面常用的定理 定理7(余数定理)用一次多项式x-a去除多项式f(x),所 得的余式是一个常数这个常数等于函数值f(a) 证明用x-a去除f(x),设商为q(x),余式为一常数c
文档格式:DOC 文档大小:135KB 文档页数:2
在一元多项式环中,可以作加、减、乘三种运算,但是乘法的逆运算—除法 —并不是普遍可以做的.因之整除就成了两个多项式之间的一种特殊的关系
文档格式:DOC 文档大小:97.5KB 文档页数:3
定义设A是数域K上一个n阶方阵,g(x)是K上一个m次多项式.如果g(A)=0,则g(x) 称为方阵A的一个化零多项式 Hamilton-Cayley-定理设A是数域K上的n阶方阵,f是A的特征多项式,则f(A)=0. 证明A在C内相 Jordan似于形矩阵J,即有c上可逆阵T使TAT=J显然对任意正 整数k
文档格式:DOC 文档大小:141KB 文档页数:4
1.x-y数据存在 finalprojectdata.txt文件中。确定拟合该数据的最低阶多项式。提示:调用 polyfit函数 2.确定拟合的最低阶多项式分别在x=3.5,x=.2.和x=11.1处的值(精确到小数点3位)。提示:调用 polyval函数 3.绘出x-y数据以及拟合的最低阶多项式确定的函数在区间010]上曲线图(加标注加以区分数据)
首页上页345678910下页末页
热门关键字
搜索一下,找到相关课件或文库资源 304 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有