点击切换搜索课件文库搜索结果(988)
文档格式:DOC 文档大小:242.5KB 文档页数:5
第六章6-4四维时空空间与辛空间 在狭义相对论中,用三个空间坐标和一个时间坐标来刻画一个物体的运动,称为四维时 空空间 在R上规定一个特殊的度量f(a,B)=x1y1+x2y2+x3y3-x4y4(其中a=( x,x2,x3,x4)',B=(y1,y2,y3,y4)),称为四维时空空间的度量
文档格式:DOC 文档大小:1.37MB 文档页数:27
选择题] 容易题1-36,中等题37-87,难题88-99。 x+3y+2z+1=0 1.设有直线L 及平面x:4x-2 2=0,则直线L 2x-y-10+3=0 (A)平行于丌。(B)在上丌。(C)垂直于x。(D)与丌斜交 2.二元函数∫(x,y)= (x.(09在点0处() (x,y)=(0,0) (A)连续,偏导数存在 (B)连续,偏导数不存在 (C)不连续,偏导数存在 (D)不连续,偏导数不存在 设函数n=Mx9)1=x由方程组{=2+”。确定,则当n一时, y=u +l (C)-l (D) 答:B
文档格式:PDF 文档大小:200.94KB 文档页数:37
1.平面图形的面积 定积分的应用,关键是把问题写成「f(x)bx的形式,这时关键是把f(x)dr=dF(x) 的意义搞清楚,这个观点称为微元法。 比如要求以x=a,x=b(a
文档格式:DOC 文档大小:75KB 文档页数:1
第六章6-2欧氏空间中特殊的线性变换(续) 命题正交矩阵的特征多项式的根的绝对值等于1证明设入∈C是正交矩阵A的特征多项式的根,则≠0.齐次线性方程组(e-a)X=0在C内有非零解向量
文档格式:PDF 文档大小:53.18KB 文档页数:1
第7章数值积分 1.确定求积结点x1,x2,使求积公式 f(x)dxlf(-1)+2f(x)+3f(x2)+(p,f)代数精度尽量高。 2.确定求积系数A,A2和求积结点x1,x2,使求积公式
文档格式:DOC 文档大小:251.5KB 文档页数:3
5.1.3线性空间上的对称双线性函数、二次型函数的定义 定义若f为V上的双线性函数且f(a,B)=f(B,a),则称f为V上的对称双线性函数
文档格式:PPT 文档大小:835.5KB 文档页数:19
前面讨论的定积分不仅要求积分区间[a,b]有限,而且 还要求被积函数f(x)在[a,b]上有界.然而实际还经常遇到 无限区间或无界函数的积分问题.这两类积分统称为广义 积分.其中前者称为无穷积分,后者称为瑕积分. 对于广义积分的计算是以极限为工具来解决的,即先 将广义积分转化为定积分,再对该定积分求极限
文档格式:DOC 文档大小:197.5KB 文档页数:2
4.4.2关于特征向量与特征子空间的一些性质 命题线性变换的属于不同特征值的特征向量线性无关。 证明设A为VK上的线性变换,,2,是两两不同的特征值,(1≤i≤t)是 属于特征子空间V的特征向量,设k,k2,k,∈K,使得k5+k252+…+k5=0,两 边用A作用(i=1,2,…,-1),于是得到方程组
文档格式:DOC 文档大小:1.59MB 文档页数:28
[选择题] 容易题1—39,中等题40—106,难题107—135。 1.设函数y=f(x)在点x处可导,△y=fx+h)-f(x),则当h→0时,必有 () (A)dy是h的同价无穷小量 (B)△y-dy是h的同阶无穷小量。 (C)dy是比h高阶的无穷小量 ()△y-dy是比h高阶的无穷小量 答D 2.已知f(x)是定义在(∞,+∞)上的一个偶函数且当x0,f(x)0,f\(x)0,f\(x)>0 ()f(x)0 答C
文档格式:PPT 文档大小:657KB 文档页数:27
第八章函数逼近 拟解决的问题: 1.计算复杂的函数值 2.已知有限点集上的函数值,给出在包含该点集的区间上函数的简单表达式 函数逼近—对函数类A中给定的函数f(x),记作f∈A要求在另一类简单的便于计算的函数类B中求函数B使p(x)与f(x)的误差在某种度量意义下最小。 本章只讨论逼近函数为m次的代数多项式pm(x)的情形
首页上页5758596061626364下页末页
热门关键字
搜索一下,找到相关课件或文库资源 988 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有