第八章函数逼近 拟解决的问题: 1.计算复杂的函数值 2.已知有限点集上的函数值,给出在包含该点集的 区间上函数的简单表达式 函数逼近一一对函数类A中给定的函数f(x),记作f(x)∈A, 要求在另一类简单的便于计算的函数类B中求函数(x)∈B, 使p(x)与f(x)的误差在某种度量意义下最小。 本章只讨论逼近函数为m次的代数多项式pmn(x)的情形。 逼近问越函数逼近 曲线拟合
第八章 函数逼近 拟解决的问题: 1. 计算复杂的函数值 2. 已知有限点集上的函数值,给出在包含该点集的 区间上函数的简单表达式 函数逼近——对函数类A中给定的函数f(x),记作 要求在另一类简单的便于计算的函数类B中求函数 使p(x)与f(x)的误差在某种度量意义下最小。 f x A ( ) , p x B ( ) , 逼近问题 函数逼近 曲线拟合 本章只讨论逼近函数为m次的代数多项式pm(x)的情形
P R中向量的范数:X1=∑|x i=1 Xl=x1|+1x2|+…+1xn=∑|x11-范数 X|2 2 C +xa +...+x 2 2—范数 =1 X|l=max{x1x2l…xn} maxl x 1≤i<n 范数 用记号·泛指任意一种范数
Rn中向量的范数: 1 1 2 1 || || | | | | | | | | n n i i X x x x x = = + + + = 1 2 2 2 2 2 2 1 2 1 || || n n i i X x x x x = = + + + = 1 2 1 || || max | |,| |, ,| | max | | n i i n X x x x x = = 1—范数 2—范数 ∞—范数 1 1 || || | | n p p p i i X x = = 用记号 || || 泛指任意一种范数
度量函数之间的距离的概念 对∫(x)∈C|a,b,定义以下三种函数范数 X=x1|f=(x)t1-范数 Xl=(∑x2r=(mr(xt)22-范数 i=1 I xll=max xi)lf max(x o一范数 1≤i≤nl x∈a,b 两函数f(x)29(x)之间的距离可以用|f-!来度量。 f(x)与逼近函数Pn(x)之间的距离可以用|fpml来度量
两函数f(x),g(x)之间的距离可以用 ||f-g|| 来度量。 度量函数之间的距离的概念—— 对 f x C a b ( ) [ , ], 定义以下三种函数范数 1 || || ( ) b a f f x dx = ( ) 1 2 2 2 || || ( ) b a f f x dx = [ , ] || || max ( ) x a b f f x = 1—范数 2—范数 ∞—范数 f(x)与逼近函数pm(x)之间的距离可以用 ||f-pm|| 来度量。 1 1 || || | | n i i X x = = 1 2 2 2 1 || || n i i X x = = 1 || || max | | i i n X x =
在(x)-P(x)=([(x)-P2(x)dy 或fxX)-(X)=∑[f(x)-P2(x)(离散情形下) i=0 度量意义下的函数逼近方法称为最佳平方逼近或最小平方逼近、 最小二乘法,其中X=(x,x1,…xn) 在‖f(x)-Pn(x)|=maxf(x)-Pn(x) x∈a,b 度量意义下的函数逼近方法称为最佳一致逼近
在 度量意义下的函数逼近方法称为最佳一致逼近。 [ , ] || ( ) ( ) || max ( ) ( ) m m x a b f x P x f x P x − = − 在 或 度量意义下的函数逼近方法称为最佳平方逼近或最小平方逼近、 最小二乘法,其中 ( ) 1 2 2 2 || ( ) ( ) || ( ) ( ) b m m a f x P x f x P x dx − = − 离散情形下 1 2 2 2 0 || ( ) ( ) || ( ) ( ) ( ) n m i m i i f X P X f x P x = − = − 0 1 ( , , ). X x x x = n
§1离散情况下的最小平方逼近 问题提出: 已知点列(xy)(i=0,1,2,,n)。确定参数aa1y,am, 使函数g(x)=a090+a191+…+anyn是上述点列的最小 平方逼近函数。 (本章只讨论g(x)为代数多项式Pm(x)=a+aⅸ1,+anXm) 分析: 1.m≤n 2.如果m=n,上述问题即为插值问题 3.如果m<n,考虑使误差函数E取最小值,其中 E圳42=∑[(x)-gx
§1 离散情况下的最小平方逼近 问题提出: 已知点列(xi ,yi ) (i=0,1,2,…,n)。确定参数a0 ,a1 ,…,am, 使函数 是上述点列的最小 平方逼近函数。 (本章只讨论g(x)为代数多项式Pm(x)=a0+a1x1+…+amxm) 分析: 1. m n 2. 如果m=n,上述问题即为插值问题 ≤ 3. 如果m<n,考虑使误差函数E取最小值,其中 2 2 2 0 || || ( ) ( ) n i i i E f x g x = = = − 0 0 1 1 ( ) m m g x a a a = + + +
11最小逼近函数的解法 (x)=a090+a1+…+un E=a=∑[f(x)-g(x) i=0 E是关于a0a1…,am的连续函数,且E20,所以一定 存在一组数a,a1…an使得E取极小值,只要满足 OE =0(j=0,1,…,m) ∑[agn(x)+a91(x)+…+an9n(x,)-∫(x) J I=0 2∑[aq(x)+aq(x)+…+an9n(x1)-f(x)q(x) i=0 0(j=0,1,…,m)
E是关于a0 ,a1 ,…,am的连续函数,且E≥0,所以一定 存在一组数a0 ,a1 ,…,am使得E取极小值,只要满足 即 2 2 2 0 || || ( ) ( ) n i i i E f x g x = = = − 0 0 1 1 ( ) m m g x a a a = + + + 0 ( 0,1, , ) j E j m a = = 2 0 0 1 1 0 0 0 1 1 0 ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) 0 ( 0,1, , ) n i i m m i i i j n i i m m i i j i i a x a x a x f x a a x a x a x f x x j m = = + + + − = + + + − = = 1.1 最小逼近函数的解法
∑[aq(x)+aq1(x)+…+an9n(x)-f(x)q(x)=0 91;“9 上式整理得 ∑q(x(x)4+∑q(x)(x)a 0 i=0 ∑pn(x)( ∑∫(x)(x =0 i=0 上述方程组称为正规方程组或法方程组。 只要求解满足上述方程组的aa1…,am即可
上式整理得 只要求解满足上述方程组的a0 ,a1 ,…,am即可。 0 0 1 1 0 0 0 0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 0,1, , ) n n i j i i j i i i n n m i j i m i j i i i x x a x x a x x a f x x j m = = = = + + + = = 0 0 1 1 0 2 ( ) ( ) ( ) ( ) ( ) 0 ( 0,1, , ) n i i m m i i j i i a x a x a x f x x j m = + + + − = = 上述方程组称为正规方程组或法方程组
定义:设函数组{((x)q(x,…,gn(x)}中的每个函数都在区间 1连续,如果对任意选取的不全为零的数a0,a1,…,am 函数g(x)=a9+a11+…+an2m在l上具有的零点个数 都不多于m个,则称该函数组为切比雪夫组或称该函数 组满足Harr条件。 定理81如果函数组{q(x,g(x)…,mn(x)}在包含点集 x(=0,1,…,m)的区间上满足Har条件,则法方程 组的系数矩阵非奇异,即最小平方逼近有唯一解
定义:设函数组 中的每个函数都在区间 I上连续,如果对任意选取的不全为零的数 函数 在I上具有的零点个数 都不多于m个,则称该函数组为切比雪夫组或称该函数 组满足Harr条件。 0 1 ( ), ( ), , ( ) x x x m 0 1 , , , , m a a a 0 0 1 1 ( ) m m g x a a a = + + + 定理8.1 如果函数组 在包含点集 的区间上满足Harr条件,则法方程 组的系数矩阵非奇异,即最小平方逼近有唯一解 0 1 ( ), ( ), , ( ) x x x m ( 0,1, , ) i x i m = 0 1 , , , . m a a a
显然,当(x)=x(j=01,…,m时,函数组{l,x,x2,,x" 满足Har条件。此时,最小平方逼近多项式为 Pn (x)=o+a1x+a2x'+.+amx 相应的法方程组为 (n+);a+∑x4+ xmam=∑f(x) i=0 0 2)+()+-+-)n2 ·a,十…十)x 7m|-an=∑xf(x)
显然,当 时,函数组 满足Harr条件。 ( ) ( 0,1, , ) j j x x j m = = 2 1, , , , m x x x 此时,最小平方逼近多项式为 2 0 1 2 ( ) m P x a a x a x a x m m = + + + + 相应的法方程组为 ( ) 2 0 1 2 0 0 0 0 2 3 1 0 1 2 0 0 0 0 0 1 0 1 0 0 1 ( ) ( ) n n n n m i i i m i i i i i n n n n n m i i i i m i i i i i i i n n m m i i i i n a x a x a x a f x x a x a x a x a x f x x a x a x = = = = + = = = = = + = = + + + + + = + + + + = + + 2 2 2 0 0 0 ( ) n n n m m m i i m i i i i i a x a x f x + = = = + + =
上述法方程组可以用矩阵表示为MMA=MY 其中 n x f(r,) 当m=0时,法方程组退化为一个方程(n+1)a=∑ 解得 y+y1+…+y n+1 从而得最小平方逼近多项式P(x)=++∵;:+n n+1 可见,零次最小逼近多项式就是我们常用的算术平均值
上述法方程组可以用矩阵表示为 M MA M Y = 其中 2 0 0 0 0 0 0 2 1 1 1 1 1 1 2 1 ( ) 1 ( ) , , 1 ( ) m m m n n n m n n x x x a f x y x x x a f x y M A Y x x x a f x y = = = = 当m=0时,法方程组退化为一个方程 ( ) 0 0 1 n i i n a y = + = 解得 0 1 0 1 n y y y a n + + + = + 从而得最小平方逼近多项式 0 1 0 ( ) 1 n y y y P x n + + + = + 可见,零次最小逼近多项式就是我们常用的算术平均值