点击切换搜索课件文库搜索结果(701)
文档格式:DOC 文档大小:226KB 文档页数:3
4.3.2线性映射的运算的定义与性质 定义线性映射的运算(加法与数域K上的数量乘法)设f:U→V,g:U→V为线性映射,定义f+g为f+g:U→V
文档格式:DOC 文档大小:208KB 文档页数:4
第四章线性空间与线性变换 1线性空间的基本概念 4.1.1线性空间的定义及例 1、线性空间的定义 定义4.1线性空间 设V是一个非空集合,且V上有一个二元运算“+”(V×V→V),又设K为数 域,V中的元素与K中的元素有运算数量乘法“·”(K×V→V),且“+”与“·”满足如下性质: 1、加法交换律a,B∈V,有a+B=B+a; 2、加法结合律a,B,y∈V,有(a+B)+y=a+(B+y)
文档格式:DOC 文档大小:419.5KB 文档页数:5
8-1有理整数环的基本概念 8.1.1有理整数环的基本概念 全体整数所组成的集合中有两种运算:加法和乘法,而且它们满足下面运算法则: 1)加法满足结合律; 2)加法满足加换律 3)有一个数0,是对任意整数a,0+a=a; 4)对任意整数a,存在整数b,使b+a=0 5)乘法满足结合律 6)有一个数1,是对任意整数a,la=a 7)加法与乘法满足分配律:a(b+c)=ab+ac
文档格式:PPT 文档大小:348KB 文档页数:26
若干个同维数的列向量(或同维数的行向量) 所组成的集合叫做向量组.
文档格式:PPT 文档大小:374KB 文档页数:21
考察一般线性方程组 +a12x2++ainn=b , ① ax1+a32x2+…+=b 其中x1,x2,xn为未知量,s为方程个数 a(i1,2,sj=1,2,n)称为方程组系数: b(i=1,2,s)称为常数项
文档格式:DOC 文档大小:66.5KB 文档页数:2
定义6设A是线性空间V的一个线性变换,的全体像组成的集合称为 的值域,用AV表示所有被A变成零向量的向量组成的集合称为A的核,用 A-(0)表示 若用集合的记号则AV={A55∈V},a-(0)={A5=0,5∈V} 线性变换的值域与核都是V的子空间 AV的维数称为A的秩,A-(0)的维数称为A的零度
文档格式:DOC 文档大小:81.5KB 文档页数:3
一、初等因子的概念 定义7把矩阵A(或线性变换A)的每个次数大于零的不变因子分解成互 不相同的一次因式方幂的乘积,所有这些一次因式方幂(相同的必须按出现的次 数计算)称为矩阵A(或线性变换A)的初等因子 例设12级矩阵的不变因子是
文档格式:PPT 文档大小:397KB 文档页数:16
一、线性空间中向量之间的线性关系 二、线性空间的维数、基与坐标
文档格式:DOC 文档大小:59.5KB 文档页数:1
在求一个数字矩阵A的特征值和特征向量时曾出现过-矩阵AE-A,我们 称它A为的特征矩阵这一节的主要结论是证明两个nxn数字矩阵A和B相似的 充要条件是它们的特征矩阵E-A和AE-B等价. 引理1如果有nxn数字矩阵PQ使 ME-A=(ME-B)
文档格式:DOC 文档大小:208KB 文档页数:4
第四章线性空间与线性变换 4-1线性空间的基本概念 4.1.1线性空间的定义及例 1、线性空间的定义 定义4.1线性空间 设V是一个非空集合,且V上有一个二元运算“+”(V×V→V),又设K为数域,V中的元素与K中的元素有运算数量乘法“·”(K×V→V),且“+”与“·”满足如下性质: 1、加法交换律a,B∈V,有a+B=B+a; 2、加法结合律a,B,y∈V,有(a+B)+y=a+(B+y)
首页上页6364656667686970下页末页
热门关键字
搜索一下,找到相关课件或文库资源 701 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有