点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:894.08KB 文档页数:27
在第十一章“函数”中,已经初步接触过 Green函数,讨论了常微分方程 Green 函数的定义、对称性质及其求法 本章将继续这一话题,讨论偏微分方程定解问题 Green函数的概念、对称性质以 及常用的求法
文档格式:PDF 文档大小:295.39KB 文档页数:21
泛函,简单地说,就是以整个函数为自变量的函数.这个概念,可以看成是函数概念的 推广. F 所谓函数,是指给定自变量x(定义在某区间内)的任一数值,就有一个y与之对应.y称 为x的函数,记为y = f(x).
文档格式:PPT 文档大小:565KB 文档页数:29
其它展开 一、周期为2L的周期函数展开成 Fourier级数 前面我们所讨论的都是以2为周期的函数 展开成 Fourier级数,但在科技应用中所遇到的 周期函数大都是以T为周期,因此我们需要讨论 如何把周期为T=2l的函数展开为 Fourier级数 若f(t)是以T=2l为周期的函数,在[-l,l) 上满足 Dirichlet条件
文档格式:PPT 文档大小:854KB 文档页数:38
一、隐函数的导数 定义: 由方程所确定的函数 y = y(x)称为隐函数.y = f (x) 形式称为显函数
文档格式:PPT 文档大小:441KB 文档页数:16
一、初等函数的求导问题 1.常数和基本初等函数的导数公式
文档格式:PPT 文档大小:447KB 文档页数:23
由单调性的判定法则,结合函数的图形可知, 曲线在升、降转折点处形成“峰”、“谷”,函 数在这些点处的函数值大于或小于两侧附近各点 处的函数值。函数的这种性态以及这种点,无论 在理论上还是在实际应用上都具有重要的意义, 值得我们作一般性的讨论
文档格式:PPT 文档大小:794KB 文档页数:39
1、原函数 如果在区间I 内,可导函数F( x) 的导函数为 f ( x) , 即 x  I , 都 有 F(x) = f (x) 或 dF( x) = f ( x)dx,那么函数F( x) 就称为 f ( x)或 f ( x)dx在区间I 内原函数
文档格式:PPT 文档大小:301KB 文档页数:15
2.2函数的求导法则 一、函数的和、差、积、商的求导法则 二、反函数的求导法则 三、复合函数的求导法则 四、基本求导法则与导数公式
文档格式:PPT 文档大小:491KB 文档页数:26
隐函数的求导法则 一、一个方程的情形 1.F(x,y)=0 隐函数存在定理1设函数F(x,y)在点P(x,yo)的某一邻域内具有连续的偏导数,且F(x,yo)=0,F(x,yo)≠0,则方程F(x,y)=0在点P(x,yo)的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数y=f(x),它满足条件yo=f(x),并有
文档格式:PPT 文档大小:294.5KB 文档页数:18
一、泰勒级数 二、函数展开成幂级数 函数f(x)是否能在某个区间内“展开成幂级数”,就是说,是否能找到这样一个幂级数,它在某区间内收敛,且其和恰好就是给定的函数f(x).如果能找到这样的幂级数,则称函数f(x)在该区间内能展开成幂级数
首页上页6768697071727374下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有