点击切换搜索课件文库搜索结果(801)
文档格式:PDF 文档大小:90.45KB 文档页数:15
在初等数学中我们有加法和乘法运算,在微积分中我们引进了新的运算极限lim,求导 和积分在定义这些运算时我们都特别指出其与加法和数乘可交换,即与加法和数
文档格式:DOC 文档大小:194.5KB 文档页数:7
2.5.1n阶方阵,对角矩阵,数量矩阵,单位矩阵,初等矩阵,对称、反对称、上三角、 下三角矩阵。 定义(数域K上的n阶方阵)数域K上的nn矩阵成为K上的n阶方阵,K上全 体n阶方阵所成的集合记作Mn(K)
文档格式:DOC 文档大小:194.5KB 文档页数:7
2.5.1n阶方阵,对角矩阵,数量矩阵,单位矩阵,初等矩阵,对称、反对称、上三角、 下三角矩阵 定义(数域K上的n阶方阵)数域K上的nn矩阵成为K上的n阶方阵,K上全 体n阶方阵所成的集合记作Mn(K)
文档格式:DOC 文档大小:208KB 文档页数:4
第四章线性空间与线性变换 1线性空间的基本概念 4.1.1线性空间的定义及例 1、线性空间的定义 定义4.1线性空间 设V是一个非空集合,且V上有一个二元运算“+”(V×V→V),又设K为数 域,V中的元素与K中的元素有运算数量乘法“·”(K×V→V),且“+”与“·”满足如下性质: 1、加法交换律a,B∈V,有a+B=B+a; 2、加法结合律a,B,y∈V,有(a+B)+y=a+(B+y)
文档格式:DOC 文档大小:82KB 文档页数:2
7-1幂零线性变换的 Jordan标准型 A是数域K上n维线性空间V上的线性变换,如果存在正整数m,使A=0,则称A是一个 幂零线性变换. 对数域K上n阶方阵A,如果存在正整数m,使Am=0,则称A为幂零矩阵 命题幂零线性变换的特征值等于0 证明设是V上幂零线性变换A的特征值,则存在V中非零向量a,使得 Aa= 假设A=0
文档格式:DOC 文档大小:111.5KB 文档页数:4
一、二次型及其矩阵表示 设 P 是一个数域,一个系数在数域 P 中的
文档格式:DOC 文档大小:854.5KB 文档页数:19
线性函数 定义1设V是数域P上的一个线性空间,f是V到P的一个映射,如果f 满足 1)f(a+)=f(a)+f() 2) f(ka)=(a), 式中a,B是V中任意元素,k是P中任意数,则称f为V上的一个线性函数 从定义可推出线性函数的以下简单性质: 1.设f是v上的线性函数,则f(0)=0,f(-a)=-f(a) 2.如果B是a1,a2…,a的线性组合:
文档格式:DOC 文档大小:126KB 文档页数:3
一、线性变换的定义 线性空间V到自身的映射称为V的一个变换 定义1线性空间V的一个变换A称为线性变换,如果对于V中任意的元 素a,和数域P中任意数k,都有 A(a+B)=(a)+A(B);
文档格式:DOC 文档大小:53.5KB 文档页数:2
现在应用行列式解决线性方程组的问题.在这里只考虑方程个数与未知量个 数相等的情形
文档格式:DOC 文档大小:149KB 文档页数:4
作为因式分解定理的一个特殊情形,有每个次数≥1 的有理系数多项式都能 分解成不可约的有理系数多项式的乘积.但是对于任何一个给定的多项式,要具 体地作出它的分解式却是一个很复杂的问题,即使要判别一个有理系数多项式是 否可约也不是一个容易解决的问题,这一点是有理数域与复数域、实数域不同的
首页上页7172737475767778下页末页
热门关键字
搜索一下,找到相关课件或文库资源 801 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有