点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:401.5KB 文档页数:61
12.1 聚类分析的基本原理 12.1.1 什么是聚类分析? 12.1.2 相似性的度量 12.2 层次聚类 12.2.1 层次聚类的两种方式 12.2.2 类间距离的计算方法 12.2.3 层次聚类的应用 12.3 K-均值聚类 12.3.1 K-均值聚类的基本过程 12.3.2 K-均值聚类的应用 12.3.3 使用聚类方法的注意事项
文档格式:PPT 文档大小:259KB 文档页数:18
一、目的要求 1.掌握多重线性回归的意义及用途; 2.掌握多重线性回归与相关的有关指标的含义。 3.熟悉多重相关与回归分析的基本原理和方法。 4.了解多重共线性的概念及其对回归分析结果的影响
文档格式:PPT 文档大小:220KB 文档页数:14
一、目的要求 1. 掌握两个定量变量之间相关分析的意义、用途与假设检验。 2.掌握分类计数资料的两变量间关联性的定量分析方法
文档格式:PDF 文档大小:573.93KB 文档页数:41
1 Numerical optimization methods in R 1.1 Root-finding in one dimension 1.1.1 Bisection method 1.1.2 Brent’s method 1.1.3 Newton’s method 1.1.4 Fisher scoring 1.2 multivariate optimization 1.2.1 Newton’s method and Fisher scoring 1.3 Numerical Integration 1.4 Maximum Likelihood Problems 1.5 Optimization Problems 1.5.1 One-dimension Optimization 1.5.2 multi-dimensional Optimization 1.6 Linear Programming
文档格式:PDF 文档大小:628.39KB 文档页数:44
1 EM optimization method 1.1 EM algorithm 1.2 Convergence 1.3 Usage in exponential families 1.4 Usage in finite normal mixtures 1.5 Variance estimation 1.5.1 Louis method 1.5.2 SEM algorithm 1.5.3 Bootstrap method 1.5.4 Empirical Information 1.6 EM Variants 1.6.1 Improving the E step 1.6.2 Improving the M step 1.7 Pros and Cons
文档格式:PDF 文档大小:652.5KB 文档页数:54
1 Markov Chain Monte Carlo Methods 1.4 The Gibbs Sampler 1.4.1 The Slice Gibbs Sampler 1.5 Monitoring Convergence 1.5.1 Convergence diagnostics plots 1.5.2 Monte Carlo Error 1.5.3 The Gelman-Rubin Method 1.6 WinBUGS Introduction 1.6.1 Building Bayesian models in WinBUGS 1.6.2 Model specification in WinBUGS 1.6.3 Data and initial value specification 1.6.4 Compiling model and simulating values
文档格式:PDF 文档大小:699.21KB 文档页数:53
1 Markov Chain Monte Carlo Methods 1.1 Introduction 1.1.1 Integration problems in Bayesian inference 1.1.2 Markov Chain Monte Carlo Integration 1.1.3 Markov Chain 1.2 The Metropolis-Hastings Algorithm 1.2.1 Metropolis-Hastings Sampler 1.2.2 The Metropolis Sampler 1.2.3 Random Walk Metropolis 1.2.4 The Independence Sampler 1.3 Single-component Metropolis Hastings Algorithms 1.4 Application: Logistic regression
文档格式:PDF 文档大小:709.98KB 文档页数:49
1 Bootstrap and Jackknife 1.1 The Bootstrap 1.1.1 Bootstrap Estimation of Standard Error 1.1.2 Bootstrap Estimation of Bias 1.2 Jackknife 1.3 Jackknife-after-Bootstrap 1.4 Bootstrap Confidence Intervals 1.4.1 The Standard Normal Bootstrap Confidence Interval 1.4.2 The Percentile Bootstrap Confidence Interval 1.4.3 The Basic Bootstrap Confidence Interval 1.4.4 The Bootstrap t interval 1.5 Better Bootstrap Confidence Intervals 1.6 Application: Cross Validation
文档格式:PDF 文档大小:637.97KB 文档页数:43
1 Monte Carlo Methods in Inference 1.1 Monte Carlo Methods for Estimation 1.1.1 Monte Carlo Estimation and Standard Error 1.1.2 Estimation of MSE 1.2 Estimating a confidence level 1.3 Monte Carlo Methods for Hypothesis Tests 1.4 Empirical Type I error rate 1.4.1 Power of a Test 1.4.2 Power Comparisons 1.5 Application: “Count Five” Test for Equal Variance
文档格式:PDF 文档大小:634.25KB 文档页数:57
1 Methods for Generating Random Variables 1.1 Generating Uniform(0,1) random number 1.2 Random Generators of Common Probability Distribution in R 1.2.1 The Inverse Transform Method 1.2.2 The Acceptance-Rejection Method 1.2.3 Transformation Methods 1.2.4 Sums and Mixtures 1.3 Multivariate Distribution 1.3.1 Multivariate Normal Distribution 1.3.2 Mixtures of Multivariate Normals 1.3.3 Wishart Distribution 1.3.4 Uniform Distribution on the d−Sphere 1.4 Stochastic Process
首页上页7677787980818283下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有