点击切换搜索课件文库搜索结果(125)
文档格式:PDF 文档大小:312.34KB 文档页数:50
1.方阵的特征值与特征向量 2.相似矩阵 3.实对称矩阵的对角化 4.二次型及其标准形 5.正定二次型与正定矩阵
文档格式:PPT 文档大小:618.5KB 文档页数:34
一、特征值与特征向量的概念 定义1设A是n阶矩阵如果数λ和n维非零列向量x使关系式
文档格式:PPT 文档大小:1.46MB 文档页数:18
一、对称矩阵的性质 二、利用正交矩阵将对称矩阵对角化的方法 三、小结思考题
文档格式:DOC 文档大小:214.5KB 文档页数:2
命题如果n维空间V上的线性变换A的矩阵相似于对角矩阵,则A在任一不变子空 间M上(的限制)的矩阵相似于对角矩阵。 证明若V上的线性变换A的矩阵相似于对角矩阵,则V可以分解为特征子空间的直 和。记A的所有特征值为,2,2,则V=V4V,取M=nV, 断言M=M1M2⊕M,首先要证明
文档格式:PDF 文档大小:414.13KB 文档页数:5
给出了一般奇数阶泛对角幻方(Pandiagonal Magic Square)的作法。按这种方法,不需借助于任何工具,对任意1个不是3的倍数的奇数n及任意预先规定好的第1行或第1列元素,都能快速地作出n阶泛对角幻方。并对方法进行了理论上的严格证明,同时估计了所能作出的幻方个数的下界
文档格式:DOC 文档大小:50.5KB 文档页数:2
定理7设A是n维线性空间V的一个线性变换A的矩阵可以在某一基下为 对角矩阵的充要条件是A有n个线性无关的特征向量. 定理8属于不同特征值的特征向量是线性无关的 推论1如果在n维线性空间V中,线性变换的特征多项式在数域P中有n 个不同的根,即A有n个不同的特征值,那么A某组基下的矩阵是对角形的 推论2在复数上的线性空间中,如果线性变换A的特征多项式没有重根
文档格式:DOC 文档大小:63.5KB 文档页数:3
经过非退化线性替换,二次型的矩阵变成一个与之合同的矩阵.由第四章§4 定理 4,合同的矩阵有相同的秩,这就是说,经过非退化线性替换后,二次型矩 阵的秩是不变的.标准形的矩阵是对角矩阵,而对角矩阵的秩就等于它对角线上 不为零的平方项的个数
文档格式:DOC 文档大小:214.5KB 文档页数:2
第一学期第二十八次课 命题如果n维空间V上的线性变换A的矩阵相似于对角矩阵,则A在任一不变子空 间M上(的限制)的矩阵相似于对角矩阵。 证明若V上的线性变换A的矩阵相似于对角矩阵,则V可以分解为特征子空间的直 和。记A的所有特征值为,2,2,则V=V4V,取M=nV, 断言M=M1M2⊕M,首先要证明M=M1+M2+…M “2”显然:“”a∈M,则存在a1∈V,使a=a1+a2+…+a,两边 同时用A(j=1,2,…,t-1)作用,得到表达式
文档格式:DOC 文档大小:194.5KB 文档页数:7
第二章2-5n阶方阵 2.5.1n阶方阵,对角矩阵,数量矩阵,单位矩阵,初等矩阵,对称、反对称、上三角、 下三角矩阵 定义(数域K上的n阶方阵)数域K上的nn矩阵成为K上的n阶方阵,K上全 体n阶方阵所成的集合记作Mn(K)。 定义(n阶对角矩阵、数量矩阵、单位矩阵)数域K上形如 ( 0 0 n /nxn 的方阵被称为n阶对角矩阵,与其他矩阵相乘,有 (a1a12and
文档格式:DOC 文档大小:51.5KB 文档页数:1
准对角矩阵称为 Jordan形矩阵,而主对角线上的小块方阵J称为 Jordan块 定理设A是数域K上的n维线性空间V上的线性变换.如果A的特征值全属于K, 则A在V的某组基下的矩阵为 Jordan形,并且在不计 Jordan块的意义下 Jordan形是唯 一的. 证明:对n作数学归纳法
首页上页56789101112下页末页
热门关键字
搜索一下,找到相关课件或文库资源 125 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有