点击切换搜索课件文库搜索结果(278)
文档格式:PDF 文档大小:331.34KB 文档页数:4
通过对带钢横截面上应力状态的分析,研究了纵向拉力对带钢变形的影响,给出了计算带钢中性层应变的方法
文档格式:PDF 文档大小:330.46KB 文档页数:3
利用ANSYS有限元分析软件对反向凝固不锈钢复合带的平整轧制过程进行了变形物理场分析,得出了复合带平整轧制时内部各点的塑性应变和应力分布:轧件内存在不均匀变形,母带的应变大于凝固层,凝固层应变从表面向内部逐渐增大;在轧制变形区内,凝固层的应力大于母带;轧件的残余应力约为19 MPa.轧制力的解析结果与实测的轧制力基本相符
文档格式:PPT 文档大小:9.53MB 文档页数:58
15-1概述 15-2电阻应变计法的原理及应用 15-3光弹性法的原理及应用
文档格式:PPT 文档大小:1.02MB 文档页数:29
15-1概述 15-2电阻应变计法的原理及应用 15-3光弹性法的原理及应用
文档格式:PDF 文档大小:2.02MB 文档页数:46
概述 纵弯褶皱作用 纵弯褶皱层内的应变分布与小型构造 其它褶皱作用
文档格式:PDF 文档大小:1.25MB 文档页数:6
采用Gleeble-1500热模拟试验机,对GH625合金进行了以不同变形温度、不同应变速率变形到真应变值为0.7的热压缩试验,以研究其热变形过程的动态再结晶组织演变.利用光学显微镜(OP)和透射电镜(TEM)分析了应变速率对GH625合金热变形过程中的组织演变及动态再结晶形核机制的影响.结果表明:应变速率?=10.0s-1时,实际变形温度高于预设温度,产生变形热效应.GH625合金热变形过程的组织演变是一个受应变速率和变形温度控制的过程,在应变速率? ≤ 1.0s-1时,GH625合金动态再结晶晶粒的尺寸及体积分数随着应变速率的升高而降低,动态再结晶形核机制是由晶界弓弯的不连续动态再结晶机制和亚晶旋转的连续动态再结晶机制组成;在应变速率?=10.0s-1时,由于变形热效应使动态再结晶晶粒的尺寸及体积分数迅速升高,动态再结晶机制则是以弓弯机形核的不连续动态再结晶机制为主
文档格式:PDF 文档大小:444.15KB 文档页数:5
利用扫描电子显微镜和透射电子显微镜对热轧后双相钢的微观组织进行分析,用Image-Pro Plus软件测定双相钢微观组织中各独立相的体积分数.根据多相材料中间混合法则和Swift方程,建立热轧双相钢微观应力-应变模型,并用DP590和DP780钢单向拉伸曲线进行验证.结果表明,该应力-应变关系微观模型基本阐明热轧双相钢微观组织参数与宏观力学性能的内在联系,能够准确地描述材料的变形行为,同时很好地预测热轧双相钢宏观的拉伸曲线
文档格式:PDF 文档大小:204.98KB 文档页数:2
测1.1如图所示的平板拉伸试样受轴向力F作用,试样上如图a粘贴两片应变片R、R2, 其应变值分别为1、E2由R1、R2组成图b所示的半桥测量电路,这时应变仪读数为
文档格式:PDF 文档大小:945.02KB 文档页数:8
利用Gleeble-3800热模拟试验机对纯镍N6在变形温度800~1100℃,应变速率5~40 s-1,应变量70%条件下进行了高温塑性变形压缩试验,分析纯镍N6高温高应变速率热变形行为,得到了材料在不同变形参数条件下的组织变化规律及流变应力变化曲线,利用动态材料模型绘制出了纯镍N6在不同应变条件下的热加工图.通过对组织及热加工图的分析研究,得出变形温度为1000~1100℃,应变速率为5~7 s-1或20~40 s-1以及变形温度为800~900℃,应变速率为5~10 s-1为纯镍N6材料高温高应变速率热变形的两个合理变形参数区间,在参数区间内N6组织均匀;而流变失稳区变形参数条件下得到的组织比较紊乱,晶粒大小不一.纯镍N6热变形后的晶粒尺寸随变形温度升高及应变速率减小而增大
文档格式:PDF 文档大小:1.78MB 文档页数:9
设计了不同相构成的超高强DH钢,抗拉强度均大于1300 MPa,组织由铁素体、马氏体、残留奥氏体和极少量碳化物构成。对比了不同相构成对超高强DH钢力学性能和应变硬化行为等的影响,并深入研究了残留奥氏体在超高强度DH钢中的作用机制。结果表明:随着马氏体和残留奥氏体体积分数的增大,铁素体体积分数的减小,实验钢屈服和抗拉强度同时升高,而延伸率呈先增大后减小趋势。软韧相铁素体体积分数的减小和硬相马氏体体积分数的增大导致屈服强度和抗拉强度增加。相对于回火马氏体,淬火马氏体对强度的提升更显著,在拉伸过程中转变的残留奥氏体的量是引起延伸率变化的主要原因,组织中显著的带状组织会造成颈缩后延伸率的明显降低。通过对应变硬化行为的分析表明,随着真应变的增大,应变硬化率呈减小的趋势,在真应变大于2%后的大范围内,对于应变硬化率,DH1>DH2>DH3,主要与铁素体体积分数有关;在真应变大于5.73%后,DH2钢的应变硬化率高于DH1钢和DH3钢,主要与DH2钢中更显著的TRIP效应有关。除了残留奥氏体体积分数,残留奥氏体中的碳含量对TRIP效应同样有显著的影响。较高比例的硬相马氏体组织结合适当比例的软韧相铁素体和残留奥氏体有助于DH2钢获得最良好的强塑积13.17 GPa·%,其中屈服强度达880 MPa,抗拉强度达1497 MPa,均匀延伸率为6.71%,总伸长率为8.8%,颈缩后延伸率为2.09%,屈强比0.59
首页上页678910111213下页末页
热门关键字
搜索一下,找到相关课件或文库资源 278 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有