点击切换搜索课件文库搜索结果(342)
文档格式:DOC 文档大小:43.5KB 文档页数:1
即矩阵乘积的行列式等于它的因子的行列式的乘积 用数学归纳法,定理1可以推广到多个因子的情形,即有 推论1设A1,A2,…A是数域P上的mXn矩阵,于是 1A1A2…AHA1‖A2|…|A 定义6数域P上的n×n矩阵A称为非退化的,如果|A|≠0,否则称为退化
文档格式:DOC 文档大小:287.5KB 文档页数:4
3.1.1平行四边形的有向面积和平行六面体的有向体积具有的三条性质 在解析几何中已证明,给定二维向量空间中的单位正交标架,设向量a,B的坐标分别 为(a1,a2)和(b,b2),则由向量a,B张成的平行四边形的有向面积为ab2-a2b,这里记 为;给定三维空间内右手单位正交标架,设向量a,B,y的坐标分别为(a1,a2,a3)
文档格式:DOC 文档大小:419.5KB 文档页数:5
8-1有理整数环的基本概念 8.1.1有理整数环的基本概念 全体整数所组成的集合中有两种运算:加法和乘法,而且它们满足下面运算法则: 1)加法满足结合律; 2)加法满足加换律 3)有一个数0,是对任意整数a,0+a=a; 4)对任意整数a,存在整数b,使b+a=0 5)乘法满足结合律 6)有一个数1,是对任意整数a,la=a 7)加法与乘法满足分配律:a(b+c)=ab+ac
文档格式:PPT 文档大小:492KB 文档页数:18
3.1消元法 a1x+a12x2+…+anxn=b 对一般线性方程组{a21x+a2x2++a2nx(1) amxr +am2x2++. 当m=n,且系数行列式D≠0时,我们知方程组(1)有唯一解, 其解由 Gramer法则给出。但是若此时D=0,我们无法知道此时 方程组是有解,还是无解。同时,当m≠n时,我们也没有解 此方程组(1)的有效方法。因此我们有必要对一般线性方程
文档格式:PPT 文档大小:374KB 文档页数:21
考察一般线性方程组 +a12x2++ainn=b , ① ax1+a32x2+…+=b 其中x1,x2,xn为未知量,s为方程个数 a(i1,2,sj=1,2,n)称为方程组系数: b(i=1,2,s)称为常数项
文档格式:DOC 文档大小:854.5KB 文档页数:19
线性函数 定义1设V是数域P上的一个线性空间,f是V到P的一个映射,如果f 满足 1)f(a+)=f(a)+f() 2) f(ka)=(a), 式中a,B是V中任意元素,k是P中任意数,则称f为V上的一个线性函数 从定义可推出线性函数的以下简单性质: 1.设f是v上的线性函数,则f(0)=0,f(-a)=-f(a) 2.如果B是a1,a2…,a的线性组合:
文档格式:DOC 文档大小:905KB 文档页数:27
第九章欧几里得空间 9-1定义与基本性质 一、向量的内积 定义1设V是实数域R上一个向量空间在V上定义了一个二元实函数,称为内积记作(a,B),它具有以下性质: (1)(a,)=(B,a); (2)(ka,)=k(a,B); (3)(a+,y)=(a,y)+(B,y) (4)(a,a)≥0,当且仅当a=0时,(a,a)=0
文档格式:DOC 文档大小:419.5KB 文档页数:5
第八章有理整数环 8-1有理整数环的基本概念 8.1.1有理整数环的基本概念 全体整数所组成的集合中有两种运算:加法和乘法,而且它们满足下面运算法则: (1)加法满足结合律; (2)加法满足加换律 (3)有一个数0,是对任意整数a,0+a=a; (4)对任意整数a,存在整数b,使b+a=0 (5)乘法满足结合律 (6)有一个数1,是对任意整数a,la=a
文档格式:DOC 文档大小:254.5KB 文档页数:3
5.1.1线性空间上的线性函数的定义 1、线性函数的定义 定义设V为数域K上的线性空间,fV→K为映射,满足f(a+B)=f(a)+f(),va,B∈V;f(ka)kf(a),∈k,aev,则称f为由V到K的一个线性函数(即f为V到K的一个线性映射)如同一般的线性映射,有以下事实:
文档格式:DOC 文档大小:48KB 文档页数:1
4.1.3线性空间的基与维数,向量的坐标设V是数域K上的线性空间, 定义4.9基和维数如果在V中存在n个向量a1,a2,…,an,满足 (1)、a1,a2,…,an线性无关; (2)、V中任一向量在K上可表成a1,a2,…,an的线性组合,则称a1,a2,,an为V的一组基
首页上页678910111213下页末页
热门关键字
搜索一下,找到相关课件或文库资源 342 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有