点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:144.67KB 文档页数:9
设 A是n阶方阵,若存在非零向量 x和常数λ , 使得 Ax = λx,则称λ 是 A的特征值, x是 的属于 特征值 A λ 的特征向量.
文档格式:PDF 文档大小:147.94KB 文档页数:8
设V 是n维向量的集合,若∀α,β ∈V ,有 α + β ∈V ,则称V 关于加法封闭;若∀α ∈V ,k 是 常数,有kα ∈V ,则称V 关于数乘封闭. 设V 是 维向量的非空集合,如果对于向量的加 法和数乘向量这两种运算封闭,则称 n V 是向量空间.
文档格式:PPT 文档大小:564.5KB 文档页数:16
产生导数的实际背景 微积分的发明人之一──Newton最早用导数研究的是如何确定 力学中运动物体的瞬时速度问题。 一个运动物体在时刻t 的位移可以用函数s = s(t)来描述,它在时 间段[t, t + t]中位移的改变量为s = s( t + t) − s(t),所以当t 很小的时 候,它在时刻t的瞬时速度可以近似地用它在[t, t + t]中的平均速度
文档格式:PPT 文档大小:1.24MB 文档页数:27
微元法 我们先回忆一下求曲边梯形面积S的步骤:对区间[a,b作划分 a=x
文档格式:PPT 文档大小:1.48MB 文档页数:46
从实例看微分与积分的联系 到目前为止,我们已详细介绍了微分与积分(这里专指定积分) 的基本概念,但还不曾涉及微分与积分之间的任何联系。事实上,揭 示微分与积分之间的内在联系是需要许多预备知识的。现在这些预备 知识已经基本具备,可以为这两个重要的概念建立桥梁了
文档格式:PDF 文档大小:258.83KB 文档页数:16
产生导数的实际背景 微积分的发明人之一──Newton最早用导数研究的是如何确定 力学中运动物体的瞬时速度问题。 一个运动物体在时刻t 的位移可以用函数s st = ( )来描述,它在时 间段[, ] tt t + Δ 中位移的改变量为Δs s t t st = ( ) () + Δ − ,所以当Δt 很小的时 候,它在时刻t的瞬时速度可以近似地用它在[, ] tt t + Δ 中的平均速度 v t
文档格式:PPT 文档大小:189KB 文档页数:40
一、符号操作初步 二、符号对象的操作和转换 三、符号微积分 四、符号代数方程求解 五、符号微分方程求解
文档格式:PPT 文档大小:533.5KB 文档页数:28
在上一节我们已经看到,直接用定义 计算定积分是十分繁难的,因此我们期 望寻求一种计算定积分的简便而又一般 的方法。我们将会发现定积分与不定积 分之间有着十分密切的联系,从而可以 利用不定积分来计算定积分
文档格式:PPT 文档大小:347.5KB 文档页数:18
一、微分方程在几何中的应用举例 二、微分方程在物理学中的应用举例 三、其它应用举例
文档格式:PPT 文档大小:111.5KB 文档页数:2
一.选择题 1. 微分方程 (x + y)(dx − dy) = dx + dy的通解是( ) (A)x + y + ln(x + y) = c; (B)x − y + ln(x + y) = c; (C)x + y − ln(x + y) = c; (D)x − y − ln(x + y) = c
首页上页8788899091929394下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有