点击切换搜索课件文库搜索结果(372)
文档格式:PDF 文档大小:2.41MB 文档页数:11
针对经典人工蜂群算法收敛速率较慢,后期易陷入局部最优解的不足,本文将粒子群算法中\全局最优\的思想引入到人工蜂群算法的改进过程,从而形成了一种新的人工蜂群改进算法——粒子蜂群算法.首先,提出了趋优度的概念,用来衡量引领蜂在有限次迭代过程中向全局最优解靠近或远离的程度,趋优度值可以评价个体的\发展潜力\,趋优度值越低的个体,越需要增大变异的程度,以便找到质量更优的解.其次,专门设计了一种新的蜜蜂群体——粒子蜂,在引领蜂变异阶段根据趋优度的大小将引领蜂变异为侦查蜂和粒子蜂,粒子蜂的出现在很大程度上增加了种群的多样性,拓展了算法的搜索范围.然后,通过粒子蜂群算法种群序列是一个有限齐次马尔科夫链和种群进化单调性的分析,验证了本文所提算法的种群序列依概率1收敛于全局最优解集.最后,将本文所提算法应用于多个常见测试函数,并与经典蜂群算法、近年其他文献改进蜂群算法进行了仿真对比研究,仿真结果表明本文所提算法确实加大了种群的分散度、扩宽了搜索范围,从而具有更快的收敛速度和更高的寻优精度
文档格式:PDF 文档大小:2.64MB 文档页数:10
为提高无法准确建立数学模型的非线性约束单目标系统优化问题的寻优精度,并考虑获取样本的代价,提出一种基于支持向量机和免疫粒子群算法的组合方法(support vector machine and immune particle swarm optimization,SVM-IPSO).首先,运用支持向量机构建非线性约束单目标系统预测模型,然后,采用引入了免疫系统自我调节机制的免疫粒子群算法在预测模型的基础上对系统寻优.与基于BP神经网络和粒子群算法的组合方法(BP and particle swarm optimization,BP-PSO)进行仿真实验对比,同时,通过减少训练样本,研究了在训练样本较少情况下两种方法的寻优效果.实验结果表明,在相同样本数量条件下,SVM-IPSO方法具有更高的优化能力,并且当样本数量减少时,相比BP-PSO方法,SVM-IPSO方法仍能获得更稳定且更准确的系统寻优值.因此,SVM-IPSO方法为实际中此类问题提供了一个新的更优的解决途径
文档格式:PDF 文档大小:1.19MB 文档页数:10
针对单核学习支持向量机无法兼顾学习能力与泛化能力以及多核函数参数寻优问题,提出了一种基于群体智能优化的多核学习支持向量机算法。首先,研究了五种单核函数对支持向量机分类性能的影响,进一步提出具有全局性质的多项式核和局部性质的拉普拉斯核凸组合形式的多核学习支持向量机算法;其次,为增加粒子多样性及快速寻优,将粒子群优化算法引入了遗传算法中的杂交操作,并用此改进的群体智能优化算法对多核学习支持向量机进行参数寻优。最后,分别采用深度特征与手工特征作为识别算法的输入,研究表明采用深度特征优于手工特征。故本文采用深度特征作为多核学习支持向量机的输入,以交叉遗传与粒子群混合智能优化算法作为其寻优方式。实验选取合作医院数据集对所提算法进行训练并初步测试,进一步为了验证所提算法的泛化能力,选取公开数据集LUNA16进行测试。实验结果表明,本文算法易于跳出局部最优解,提升了算法的学习能力与泛化能力,具有较优的分类性能
文档格式:PDF 文档大小:344.52KB 文档页数:4
采用模糊方法测得冲天炉的瞬间网状图,用变步长寻优规则控制冲天炉的熔炼。研究表明,此方法使系统简单,寻优速度快,控制效果好
文档格式:PDF 文档大小:1.86MB 文档页数:6
传统人群搜索(SOA)算法通过计算搜索方向、搜索步长和搜寻更新个体位置三个步骤进行寻优.它的缺点在于计算量大,种群之间信息交流少,导致寻优速度慢.针对人群搜索算法存在的缺点,本文提出二项交叉算子改进人群搜索算法(BCOISOA)对其改进.在计算搜索步长方面,本文采用随机数与最大函数值位置乘积判断子群位置,进而提高全局寻优计算速率.在更新位置方面,本文提出二项交叉算子加强种群之间的联系,避免在更新搜索方向过程中,算法因局部最优而导致过早收敛,进而达到快速、准确寻找最优解的目的.本文将以上二项交叉算子改进人群搜索-BP神经网络算法应用在二段式磨矿过程中,实现磨矿粒度在线软测量.仿真结果表明,与人群搜索算法和粒子群算法进行比较,二项交叉算子改进人群搜索算法收敛速度更快,预测精度最高,满足对磨矿粒度实时检测的要求
文档格式:PDF 文档大小:421.95KB 文档页数:4
分析了燃气加热炉热工特点,建立了热值前馈和烟气中氧含量反馈的空气燃料比寻优模型,并将模糊控制技术运用于所建立的空气燃料比寻优模型中.现场实际运行结果表明,使用该模型能合理地控制炉气的含氧量,提高钢坯加热质量,降低燃料消耗,取得了很好的效果
文档格式:PDF 文档大小:399.51KB 文档页数:7
针对人工鱼群算法(AFSA)存在收敛速度慢和寻优精度低等问题,本文提出了一种改进人工鱼群算法(IAFSA).该算法中的人工鱼能够根据鱼群当前状态调整自身的视野和步长来平衡局部搜索和全局搜索.此外,算法中还加入了引导行为,即人工鱼在觅食行为未发现更优的位置时,当前人工鱼向最优人工鱼移动一步.仿真结果表明,改进人工鱼群算法在收敛速度、寻优精度和克服局部极值等方面有很大优势.本文将改进鱼群算法应用时滞系统的辨识中,辨识结果表明改进算法能获取被控对象的精准数学模型,并具有较强的抗干扰能力
文档格式:PPT 文档大小:1.58MB 文档页数:62
我们前面已经比较系统地讨论了双样本的参数和非参数检验的问题。现在,我们希望利用一般的方法来检验三个以上样本的差异, 检验法和方差分析法就是解决这方面问题的。检验法可以对拟合优度和独立性等进行检验,方差分析法则可以对多个总体均值是否相等进行检验。后者由于通过各组样本资料之间的方差和组内方差的比较来建立服从F分布的检验统计量,所以又称F检验。 第一节:拟合优度检验 第二节:无关联性检验 第三节:方差分析 第四节:回归方程与相关系数的检验
文档格式:PPTX 文档大小:5.33MB 文档页数:33
• 数据挖掘算法没有好坏,根据数据与数据分析需求的特点确定算法 • 数据挖掘建模标准(CRISP-DM) – 定义商业问题,理解业务背景,了解业务需求 – 数据探索、预处理与分析 – 确定可能的模型,并验证评估 – 选择分析较优算法,并进一步调优 – 应用部署模型
文档格式:PPT 文档大小:608.5KB 文档页数:21
信赖域方法是求解最优化问题的另一类有效 方法.其最初的设计思想可追溯至Levenberg Marquart 和 对Gauss-Newton法的修 正.线搜索方法是把一个复杂的最优化问题转化 成一系列简单的一维寻优问题.信赖域方法是把 最优化问题转化为一系列相对简单的局部寻优 问题.
12345678下页末页
热门关键字
搜索一下,找到相关课件或文库资源 372 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有