相关文档

一种改进的人工蜂群算法——粒子蜂群算法

针对经典人工蜂群算法收敛速率较慢,后期易陷入局部最优解的不足,本文将粒子群算法中"全局最优"的思想引入到人工蜂群算法的改进过程,从而形成了一种新的人工蜂群改进算法——粒子蜂群算法.首先,提出了趋优度的概念,用来衡量引领蜂在有限次迭代过程中向全局最优解靠近或远离的程度,趋优度值可以评价个体的"发展潜力",趋优度值越低的个体,越需要增大变异的程度,以便找到质量更优的解.其次,专门设计了一种新的蜜蜂群体——粒子蜂,在引领蜂变异阶段根据趋优度的大小将引领蜂变异为侦查蜂和粒子蜂,粒子蜂的出现在很大程度上增加了种群的多样性,拓展了算法的搜索范围.然后,通过粒子蜂群算法种群序列是一个有限齐次马尔科夫链和种群进化单调性的分析,验证了本文所提算法的种群序列依概率1收敛于全局最优解集.最后,将本文所提算法应用于多个常见测试函数,并与经典蜂群算法、近年其他文献改进蜂群算法进行了仿真对比研究,仿真结果表明本文所提算法确实加大了种群的分散度、扩宽了搜索范围,从而具有更快的收敛速度和更高的寻优精度.
团购合买资源类别:文库,文档格式:PDF,文档页数:11,文件大小:2.41MB
点击进入文档下载页(PDF格式)
共11页,试读已结束,阅读完整版请下载
点击下载(PDF格式)

浏览记录