EUROPEAN POLYMER ELSEVIER JOURNAL European Polymer Journal 37(2001)2177-2186 www.elsevier.com/locate/europolj Supermolecular structure of poly(propylene-co-ethylene)/poly(ethylene-co-vinyl acetate) blends irradiated with fast electrons. SEM, SAXS and DSC studies Milena D. Mihaylova a, Todor E. Nedkovb, Venelin P. Krestev a, Manya N. Kresteva " Faculty of Physics, Department of General Physics, Sofia Unitersity, 5 James Bourchier Boulevard, Sofia 1164, Bulgaria Institute of Macromolecular Chemistry, Prague 162 06, Czech Republic Received 7 February 2001; received in revised form 21 April 2001; accepted 30 April 2001 Abstract The present study concerns extruded polymer films from blends of i-PP-co-ethylene (PP) and poly(ethylene-co-vinyl acetate)(EVA), irradiated with fast electrons. SEM studies of the blends indicate a droplet type structure of the minor component. A co-continuous type structure was supposed for the blends with composition 50/50 wt.%. For the blends EVA/PP 40/60 wt.%, one-dimensional order and coalescence of EVA droplets are observed. The analyses of SAXS data show that this two component system could be examined as a one component, two-phase structure. The shape of the correlation function and the coincidence of the degree of crystallinity, calculated by means of SAXS and DSC, confirm this suggestion. The irradiation mainly affects the amorphous phases. The long period slightly decreases after irradiation as a result of crosslinking that mainly occurs in the amorphous part. At the same time, the thickness of crystal lamellae does not change with composition and irradiation dose. The crystallization process of irradiated samples differs from that of unirradiated ones. 2001 Elsevier Science Ltd. All rights reserved. Keywords: Poly(ethylene-co-vinyl acetate); Polypropylene; Polymer blends; Irradiated polymers; SAXS of polymer blends 1.Introduction and the shear flow create the phase structure [2-5]. Graft, block or random co-polymers are often used to One way to obtain polymeric materials with useful improve compatibility [6-8]. The interfacial tension has property profiles is blending two or more polymers. been found to be sensitive to molecular weight, tem- Most of polymer blends are prepared from incompatible perature and to the presence of co-polymers used as polymers. The mechanical properties of polymer blends interfacial modifiers in polymer blends [9-11]. A modi- are governed by composition, morphology and interface fication of the structure and properties of polymer blends structure. Useful technical properties require blends with could be achieved by irradiation with y-rays or fast elec- interfacial area between the polymer phases as large as trons [12-17]. possible [1]. Interfacial tension, the viscosity ratio na/nm The present study concerns extruded polymer films from blends of i-PP-co-ethylene (PP) and poly(ethylene- co-vinyl acetate)(EVA), irradiated with fast electrons. Corresponding author. Fax: +359-2962-5276. The net effect of irradiation depends on the chemical E-mail address: manya@phys.uni-sofia.bg (M.N. Kresteva). structure of polymers, their morphology and irradiation 0014-3057/01/S- see front matter 2001 Elsevier Science Ltd. All rights reserved. PII: S0014-3057(01)00118-5
! " #$ % & ' # ' ( ! " # $ ! % & $' () ) * + ,--./ ,. ,--./ 0- ,--. " 1 2 && && % 3-3- 4 + %&& 5-6- 4 % " 1 " 7 ! 2 77 " 8 " 7 7 $7 $ 7 " 9 8 ,--. : 7 *+, & / &/ & / ; / 7 ?.@ ; A ?,B3@ C $ ?6BD@ " 7 2 ?EB..@ 2 ?.,B.*@ " 1 2 && && % " 8 7 & F 0* ,--. ,.**B,.D6 G ( !7 + 1H I03E,E6,3,*6 -. , J2 7 # ' --.50-3*-.K ,--. : 7 &;;H - - . 5 0 - 3 * - . - - . . D 3
2178 M.D.al I European Polymer Jourmal 37(2001)2177-2186 conditions-dose,atmosphere and temperature [.The From our previous results,the following questions arise .How does the blend composition affect the distribu- naterials.The cro tion e ble ds and the polymer of lamellae and amorphous ends.The low molecular weight chains on the surfac How does radiation change this structure? the free energy the interface gives rise to an increase in the rate of uestions,SEM,SAXS and interdiffusion,hence to a broadening of interfacial bound. ay[9 2.Materials ions on PP/EVA blends and irradiated with vs or fast electrons have beer 24].Thes 24 [20.22 BASE).Lupolen V55105X is a co b rved by SEM.The results could be summarized as with 33 wt.%vinyl acetate (VA).Buplen 7623 is an i-PP follows: -olymer containing up to blends contain 0.15 wt%of stabilizer.comp rising 0.05 the two phases are incompatible.Two melting tem wt.%2.6-di-ter-butyl-4-methylphenol and 0.1 wt.%Ir Melt blending of the achieved as a result of dy Brabender plasticoder at 225C.Tubular films were ex- truded at 19 o the gher than 50 wt. the irradiation predominantly creates chain sission 250.Russia)in the air.The electron energy was 250 KeV.The current was 2 mA. prevail 3.Methods In our previous works the structure of tubular blown 3.1.SEM and DSC ime components are amor of PP and in sm c qu accelerating voltage T su diated ones 7 this temperature for5min and then non-isothermally index and density of studied sample Buplen 7623 wt.% Lupolen V5510SX wt.% Flow index(g0min) Density at239℃kgm) 8 916 EVA40 PP 100
B ?.,@ " $ B $7 8 " $7 7 ?.D@ 7 7 " 7 7 17 " 77 7 8 7 ?.E@ 7 &&% ?,-B,5@ " ?,-B,0@ ?,.@ ?,5@ 7 ?,-,,@ " 9 H " 7 ?,.,5@ 7 $ ?,. ,3@ / $7 ?.D@/ % 7 2 && ?,,@/ % 7 3- 4 ?,,@/ && ; % $7 7 ?.,,5,6,*@ ; $ 1 2 &&% L ?,6@ &: ?,*@ ; 2 % > && & 77 L " &: ?,*@ + 7 > H M 8 7 N M 7 N ; > ! " 2 && O *6,0 O7 % : %33.- O+ : %33.- 00 4 % O *6,0 && 7 .- 4 7 " " . -.3 4 9 7 --3 4 ,65 -. 4 ; 7 1 .-.- ! C79 7 O ,,3! " 2 1 .E-! " 8 ,3- ) " 7 ,3- '% " , /00 -# $ " F 7 7 7 " ! &$B !* " ,.-! $ 3 " . O A 1 O *6,0 4 : %33.- 4 + 1 7.- ,0! $70 % - .-- .D5 E35 %E- .- DED3 -D, E.6 %*- 0- 6ED3 -D. E., %3- 3- 5ED3 ,-- E.0 %5- 6- 0ED3 .E0 E.- && .-- - ,-- E-0 ,.*D #00 # 0 1 - /2 3%&&4 %225%6
M.D.al I European Polymer Jourmal 37(2001)2177-2186 2179 crystallized.The heating and cooling rates were 10C/ min. 3.2.S4XS 0.8 The SAXS measurements were performed by means of ai ating Cu The blends studied are composed of two com nd EVA Also,the EVA and Pp 0.4 ents are n data could be treated as scattering curves ofei 08 -com ponent system consisting of two phases-crystal and The ou obtained from the 12 10 20 30 x.nm the normalized one-dimensional correlation function Fig1.Correlation function of sample EVA40. The no nal correlation fund tensity by the relation 30-32]: n=5 cos()ds tallinity of the lamella stacks (partially crystallin () rix,xs differs from the total degr of crystallinity [32].If they build up the whole sample where is the desm ed for the und s ino and ated at bigher val represents the total degree of crystallinity.Ther crystallinity,obtained by DSC and other methods,could give information about the distribution of the partially 33.34 crystalline subregions in the sample volume Iots =h+k/s 4.Results and discussion The SEM microphotographs of the blends with dif- I= I.The calculated correlation function is t PP conter are preEv as the difrere relation function.The thickness of crystal lamellaed polymers cause the fracture surface to follow the blend and the degree of crystallinity.XsAxs.were calculated morphology.In the nds.the according to the relations [31.32 articles could be observed in Fis.2a.The holes left by 3a hese particles on the fracture surface could be seen in 1E 2b.1h XesnxsLy =de (3b) forms the matrix.while EVA responds for ductile fibrils ly coalesced droplets The size of dispersed e with x-axis (Fig.1).XsAxs is the crys
9 " 7 7 .-! /0%0 78 " )7 $ ) 0-- > 7 ! ' $ " " " . 7 $ 7 && % % && 7 7 7 8 7 7 ?0005@H 5 , * &P $7 7 5 5 . " +7 . " 7 1 " $ 7 7 ?0.0,@H . 0 0 7 7 7 9 1 +7 . $ ; $ 1 8 7 ?0,@ ; 7 " 7 ! 7 7 " 7 && +7 , && % 7 8 7 ; 7 % 1 % +7 , && +7 , " +7 , " 9 && 7 -. -3 ; +7 , && 1 % 2 " 9 % -. && +7 . ! %5- #00 # 0 1 - /2 3%&&4 %225%6 ,.*E
2180 M.D.Mihaylota et al I European Polymer Journal 37(2001)2177-2186 major phase.The presence of fibrils on the fracture high amount of PP.A co-continuous structure was ob- formation shows that the EVA component is not brittle ages in the present pa er one can assume a co-contin but ductile 20].although the fracture was performed hyiquidnitrogs local increase of temperature in the front of the fracture propagation Fig.3h with arre a in Fig [3 rection M(Figa).The extrusion provides conditions e canbe seen.The former should be related to more brittle work of Matsuoka and Yamamoto 361.A similar ori Pp and the atterto rubber-like ac dalthough it is similar blend et al 21 Thes chanical m odulus of EVA 20 be of chain crosslinking and EVA becomes more brittle.In his way, the enects caused by frac ngare reduced. droplet type for samples with duringSEM.Th of the EVA
G " 2 7 1 % +7 , " 2 % ?,-@ 7 > 7 " 7 % " ?,3@ ,3! 7 > 7 72 7 77 &&& ?03@ ; Q 7 %3- +7 , O 7 " && B $ % 777 7 C ?,,@ " && G ; % 7 && 6- 4 && " $7 C 7 3-3- 4 " %5- ..0 $C 7 72 +7 0 " 7 +7 0 $ +7 0 " % +7 0 7 +7 0 " 1 7 7 % && 1 $ $ R ?06@ +7 , 7 1 " % ?,-@ $7 % ; 8 7 7 1 7 " % +7 , 7 7 ,---- ) 9 9 7 5*,6 / %E-/ %*-/ %3-/ %5- ,.D- #00 # 0 1 - /2 3%&&4 %225%6
M.D.Mihaylota et al European Polymer Journal 37(2001)2177-2186 2181 was taken from:(b)x20.000.Real horizontal linear size of the SEM images is 4.726 um. component with respect to the PP matrix is not con- crystallized PP [38]The irradiation does not affect thed tsected with orentsered for this sample 261 orien. da and b of 100 kGy This is preva ng cro sults obtained by means of PALS 27.The relative fractional The shar of the correlation fun ion is typical of a ows mainly from the side of larg system with long period and lamella thickness variation Porod's integral was calculated to evaluate the (Fi 1).The non- calculated long period oud to the average 4 alue o ng perid of SAXS where K'is a constant.Xr is degree of crystallinity.n dose fo Xe) 33.37.On the other hand.both components are co Fig5.The well-expressed minimum at irradiation dos D= that chain a of the interface with ses ar PALS imila amorphous and crystal phases.An explanation of the s lifetime [27]. amorphous regions.Therefore.the influence of the in. rate peaks are observed (Fig.6).The low-tem terface thickness on the self-correlation triangle of the peak corresponds to the melting of EVA and the high- corr sare seen dootchangewihthecomptOmTabte2Tteol& houlder at the side of lower ter nperatures.These ef azghani et al. with
&& 1 ?,6@ " +7 5 $ 7 % && 7 " 1 +7 5 7 " 7 $ +7 . " 9 7 1 97 $ !> 7 7 7 + 7 &P 7 " ,EE --0 %3- 000 --0 %*- +7 5 " 77 $ 7 ?000*@ 8 ?0*@H - , . . , 5 7 7 " . %5- +7 3 " 1 .-- $C 77 $7 .-- $C &: & ?,*@ ; ! $ +7 6 " $ 7 % 7 && 7 $ " % 7 $ " 7 8 7 7 9 +7 0 7 7 %5- ..0 $C/ 33- ) 9 9 .*.D35 / / 0 $ / ,---- ) 9 9 7 5*,6 #00 # 0 1 - /2 3%&&4 %225%6 ,.D.
2182 M.D.al I European Polymer Jourmal 37(2001)2177-2186 EVA0·EVA7O·EVA5·EVA4O◆PR calculated from lorent (a) values of L.and corrected curves and o dimensiola Samples L (nm) L(nm)d (nm) EVA90 17.0 13 160 44 EVA40 15.0 14.0 40 4 EVA40 16.0 0 15.3 168 138 13.8 4 4.0x10 3.8x10 3.6x10 3.0 32x10 EVA 3.0x10 0002040608 10 210 50100 150 200 s [nm] D[kGy] 5igd-无a)as a function of iradiation dose for different heating rates(Fig.7).The second peak of PP lated accor ow-tcm stals with different melting s in the case of EVA XDsc=Xc+(-X (5) and reorganization of the crystalsin the calorimter in tion:
7 7 ; 7 8 %3- 8 7 +7 * " $ && 7 7 % 1 " 7 8 7 % 7 9 && % 7 " 7 7 ! ! . ! 3 ! 7 H " , " 7 : :9 / 7 $ : %E- .*- .0D 0D %*- .6- .55 0D %3- .3- .5. 03 %5- .3- .5- 5- " + && ; %E- .5- .05 55 %*- .5D .,D 0E %3- .5, .,D 0D %5- .6- .05 50 ; -<7 & + = 30 .56 .0* 0D D0 .30 .0D 0E .-- .6- .05 50 .66 .53 .0D 5. +7 5 7 / :9 +7 3 . %5- ,.D, #00 # 0 1 - /2 3%&&4 %225%6
M.D.Mihaylotaet al I European Polymer Journal 37(2001)2177-2186 2183 components were taken from [29]:A=8.7 kJ/mol Is as EVA40 equilibrium crystaland are the densities of crystal =854kg/m3 9 EVASC mom Rel.re their vlume fractions and were calculated by ) (7 EVA70 )p+p6阿 where p and p are the densities of EVA and PP,re- EVA90 error limits (Table 3).Hence,the stacks of crystal lam- 20 160 180 of cr tallin Temperature,C Tare almost constant X做。=-XR+ (6 of EV in all is muc values of both components are much higher than those calculated by Thomson equation: Af is the th component enthalpy of fusion of the Table 3 equilibrium crystal.The values of AH for the two Samples wt9 vol 990 777 EVA40 26 26 30 29 003 25 1012 50 173 Temperature.C with different heatin rates inC/min
! ! . ! ! 6 ! .--4 7 .--4 > " .--4 $ ?,E@H && .--4 D* $F % .--4 5. $F ; % 7 9 % .--4 > > " % E0D $70 % .-,* $70 1 ) ?,D@ && D35 $70 && E06 $70 B ) ?,E@ . * % && 7 " . " 7 ! " 0 M $ .-- $C 7 7 7 " 7 L 777 1 " 7 " 5 1 % 7 6E! " 7 " > H " 0 " 7 ! B ! ! 4 4 4 %E- ,E ,* ,* %*- ,E ,* ,6 %3- ,E ,* ,3 %5- ,D ,6 ,D " + && ; %E- 0. ,D 00 %*- ,6 ,5 0- %3- B B 0- %5- 0- ,E 0, ; -<7 & + = 30 ,E ,* ,D D0 ,D ,6 ,D .-- 0- ,E 0, ..0 ,E ,* B .66 ,D ,6 ,E +7 6 7 8 +7 * 7 8 7 %3- " 7 ! #00 # 0 1 - /2 3%&&4 %225%6 ,.D0
2184 M.D.al I European Polymer Jourmal 37(2001)2177-2186 a samples Samples THEVA(C) TmPP(C) EVA90 23 160 EVA40 ated with D=100kG EVA40 116 150 113 D(kGy 166 166 141 120 200 Temperature,C ⑧ where AH is the volume enthalpy of melting.is the 53 e前s7Sory E 83 ne equation can be due to the lower values ofas well a 100 the highamount nthe stru h VA branches inhibit the chain folding of the molecule 113 and thus increa h tie moled cular d sity.Ih he melt 166 meiting tem curves of the unirradiated samples.corre ponding to the 20 Temperature,C to lower temperatures.A high number of crystal nuclei xtra low tem (above 00 kGy for orted [20.21.27].the radiation has a stro ion Sa and b).This Teeicwithcpsaiatioaioamacos-linlkdmc
- . , D 7 7 - > 7 " 7 5 *-! 0*! && % - .D*3! && - .5.3! & 6D .-, F, && .-. F , & ?0E@ " 7 1 " > 7 ?5-@ " 7 9 A 1 % 7 " 7 && " 5 < $ " , M $ 7 " $ 9 7 9 8 +7 D 9 7 $ 9 7 7 $ 1 9 && % 1 9 $ 7 .-- $C %5- D0 $C %E- +7 D " $ 1 %E- ?,-,.,*@ 7 A % ; $ 9 $ " 7 $ 7 " 5 " 7 %! &&! %E- .,0 .6- %*- .,0 .6- %3- .,. .6, %5- .,, .6, " + && ; %E- ..D .50 %*- ..3 .55 %3- B B %5- ..6 .3- ; -<7 & + = 30 ..D .3* D0 ..E .3. .-- ..6 .3- ..0 ..D .3, .66 .-D .5. +7 D ! 9 ! % E- %5- " 27 ,.D5 #00 # 0 1 - /2 3%&&4 %225%6
M.D.Mthaylota et al I European Polymer Journal 37(2001)2177-2186 2185 energy.More detailed crystal kinetic studies are neces [6]Li L.Chen L.Bruin P.Winnik MA.Morpholog sary to verify the above suggestions. 5.Conclusions g and therr [8]S 50/50 wtFor samp EVA40.one-dimensional order and the agents in polyme this nd me nent.two-phase structure. of SAxs degre this suggestion. tion of interfacial tension between PA/PP and perio on o nly in the 19 p069-7 Glove and y cn6ainoposiowndeaipeaee [13]MatsuiT.Shimoda M.Osaj 002.0-g00 Acknowledgements [4 Ncdkov E.Krestev V.Mixed spheruli This Part of SAXS meas ents were carried out in Uni versity of Delaware,Newark, Department of materia the crystalline gn m M nc and SEM -m t . authors thank Prof Baldrean and Dr. Ledni ky wh Dr.s velankar who kindly help us with the saxs ex :CW.O'Donnell JH.editors.Washington. periments. pro operties o References Utracki LA.Polyme and blends-therm structure and strength the padcSconsid sition on the b19871818 间yof PP/P 829.1761- 间Heikens D.Barent n W.Particle dimensions in polyst
7 $ 77 %&& 3-3- 4 + %5- % " 1 " 7 ! 2 77 " 8 " 7 7 $7 $ 7 " 9 8 " $ # + 2 ;7 B O7 +36D & = # $ 7 B ; ! !9 ) & 7 " $ & F 9 F O + : $ 7 % $ $ 1 ?.@ = $ : & B 7 #R$H M / .EDE ,D3B0-, ?,@ + L F & 9 H 1 F & H & O .EE-/,DH,,3EB6E ?0@ + ! 1 F& ;A 7 &&&! & .EDD/,EH.*6.BE ?5@ $ + " R ) ;A 9 F & .EED/6DH.DE.BE-. ?3@ M$ O L & 7 & .E**/.DH6EB*, ?6@ : : ! : O & L$ 7 B &&& F & H & O .EE*/03H E*EBE5 ?*@ #) ; & ;;H 8 7 & 77 .EE5/05H.D05BE ?..@ 'G " )> ) M M % " &&& :!&&& ;+) 8 9 F & .EE3/33H.-6EB*E ?.,@ ' C :! 8 ;H $ F & $ # R$H ;& &/ .EE6 ?.0@ " < G R 7 B % 2 ; & ; .EE,/,EHD3BE- ?.5@ #$ ' % 1 7 7 ! & .EE-/,6DH.-,DB 03 ?.3@ #$ "$ 8 7 7 7 1 ) & ! .EE5/50H0E*B5-. ?.6@ =7 C C " ' $7 $ 8 7 ) & ! .ED0/,,HD5EB6- ?.*@ ; H ! 3,* ;H ) + $ !L <P FM L 7 !H !/ .EE0 ?.D@ " C7 && & F .EE,/ ,D..H.53.BD ?.E@ L )O & H 7 H M &/ .EE3 .E ?,-@ " C O) ' 7 && & 7 .ED*/.DH.DEB,., ?,.@ $ : #$ " 2 & 7 .EDE/,0H,.*B,6 ?,,@ C ' ) O' ') ; 7 7 && % F & .EE,/53H .0-0B., ?,0@ " C O) ' " #00 # 0 1 - /2 3%&&4 %225%6 ,.D3
2186 M.D.Mihaylova et al European Polymer Journal 37 (2001)2177-2186 B Reynaers H.Koch MHJ.Mathot VBF.Use of elation fu the dete [24]Minkova L,Nikolova M.Melting of irradiated film ared from polymer blends.Polym Deg ad Stab 1989: otar pobsthylene PatB1999-37:1715-38. [25]Mihaylova M,Kresteva M,Perena J.Dynamic mechanical [33]Vonk CG.Investigation of non-ideal two-phase polymer properties of polymer blends from polypropylene and structures by small-angle X-ray scattering.J Appl Cryst poly(ethylene-co-vinyl acetate)irradiated with fast elec- 1972:6:81-6. trons.Bulg J Phys,in press. 34]Medelin-Rodriguez FJ,Phillips PJ.Melting behavior of 26]Mihaylova M.Kresteva M.Krestev V,Aivazova N high-temperature polymers.Macromolecules 1996:29: ed KOV E.A nveste blends irradiated with fa end with fas 3 urelov N.Kresteva M. udie of B36]Matsuoka T.Ya to S.Co simulation of phase olv(n vinyl acetate)blends.Radiat Phys Chem 2000:583947. Appl Polym Sei 19:63073. mer mixtures. [28]Kortleve G,Tuijnman CAF,Vonk CG.Crystallization of B37]Ruland W.Small-angle X-ray scattering of two-phase branched polymers.I.Ethylene vinyl acetate and ethylene system:determination and significance of systematic devi- acrylic acid copolymers.J Polym Sci:Part A-2 1972; ations from Porod's law.J Appl Cryst 1971:4:70-3. 10:123-31 [38]Mezsghani K.Campbell AR,Phillips PJ.Lamellar thick- [29]Brandrup J,Immergut EH.Grulke EA.editors.Polymer hand 4th ed.New York:Wiley;1999.p.V21 (for PP) mm or lpopyce. [39Go VA.Lloyd DR stallization of tactic polypropy t of nuc e B Stroble GR. edooEnSc eider M.Direct e 19933522_8 Sci:Part B1980:18:134ystalline poly density correlation function of n [40]Wunderlich B.Czoryi G.Study of equilibrium
F .ED*/,,H 0,-EB.6 ?,5@ $ : #$ 7 2 & 7 .EDE/ ,3H5EB6- ?,3@ ' & F O7 F & ?,6@ ' ' % 9 # #$ 7 ) & ! .EEE/36H3D.BE ?,*@ F # ' & ) & ! ,---/3DH0EB5* ?,D@ ' C "G !+ %$ !C ! 9 ; F & H & , .E*,/ .-H.,0B0. ?,E@ O F ;7 M C$ & $ 5 # R$H L/ .EEE %,. && %E & ?0-@ O ! G +C %$ !C 7 H / .EDE ,5*B3. ?0.@ C) F & H & O .ED-/.DH.050B3E ?0,@ C O ) M ' MF %O+ = 7 F & H & O .EEE/0*H.*.3B0D ?00@ %$ !C ;7 7 7 F ! .E*,/6HD.B6 ?05@ )79 +F & &F 7 7 .EE6/,EH *5E.B3-. ?03@ % L C )F & H 0 " 8 & .EEE/5-H6-53B33 ?06@ $ " R ! 1 F & .EED/6DHD-*B.0 ?0*@ ) L 7 7 H 72 &P F ! .E*./5H*-B0 ?0D@ 97 ' ! ) & &F : $ 7 > 7 .EE5/,*HEE*B.--, ?0E@ C % : ) ; 9 ;; 8 7 7 7 & 77 .EE0/00H3,,BD ?5-@ L O !9G C > 7 .E**/.-3HE-6B.0 ,.D6 #00 # 0 1 - /2 3%&&4 %225%6