
晶体。有明确衍射图案的固体晶体(crystal)是由大量微观物质单位(原子、离子、分子等)按一定规则有序排列的结构,因此可以从结构单位的大小来研究判断排列规则和晶体形态。中文名称晶体外文名称crystal本质固体特点:呈现规则的几何形状特征(1)自然凝结的、不受外界干扰而形成的晶体拥有整齐规则的几何外形,即晶体的自范性。(2)晶体拥有固定的熔点,在熔化过程中温晶体度始终保持不变。(3)单晶体有各向异性的特点。(4)晶体可以使X光发生有规律的衍射。宏观上能否产生X光衍射现象,是实验上判定某物质是不是晶体的主要方法。(5)晶体相对应的晶面角相等,称为晶面角守恒。结构晶体按其结构粒子和作用力的不同可分为四类·离透射电镜图片看晶体结构子晶体、原子晶体、分子晶体和金属晶体。固体可分为晶体、非晶体和准晶体三大类。具有整齐规则的几何外形、固定熔点和各向异性的固态物质,是物质存在的一种基本形式。固态物质是否为晶体,一般可由X射线衍射法予以鉴定
晶体- 有明确衍射图案的固体 晶体(crystal)是由大量微观物质单位(原子、离子、分子等)按一定规则有序排列的结构, 因此可以从结构单位的大小来研究判断排列规则和晶体形态 。 中文名称 晶体 • 外文名称 crystal • 本质 固体 • 特点:呈现规则的几何形状 折叠特征 (1)自然凝结的、不受外界干扰而形成的晶体拥有整齐规则的几何外形,即晶体的自范 性。 (2)晶体拥有固定的熔点,在熔化过程中 ,温晶体度 始终保持不变。 (3)单晶体有各向异性的特点。 (4)晶体可以使 X 光发生有规律的衍射。 宏观上能否产生 X 光衍射现象,是实验上判定某物质是不是晶体的主要方法。 (5)晶体相对应的晶面角相等,称为晶面角守恒。 折叠结构 晶体按其结构粒子和作用力的不同可分为四类:离 透射电镜图片看晶体结构子晶体、原子晶体、分子晶体和金属晶体。 固体可分为晶体、非晶体和准晶体三大类。 具有整齐规则的几何外形、固定熔点和各向异性的固态物质,是物质存在的一种基本 形式。固态物质是否为晶体,一般可由 X 射线衍射法予以鉴定

晶体内部结构中的质点(原子、离子、分子、原子团有规则地在三维空间呈周期性重复排列,组成一定形式的晶格,外形上表现为一定形状的儿几何多面体。组成某种儿何多面体的平面称为晶面,由于生长的条件不同,晶体在外形上可能有些金斜,但同种晶体晶面间夹角(晶面角是一定的,称为晶面角不变原理。晶体按其内部结构可分为七大晶系和14种晶格类型。合成铋单晶体晶都有一定的对称性,有32种对称元素系,对应的对称动作群称做晶体系点群。按照内部质点间作用力性质不同,晶体可分为离子晶体、原子晶体、分子晶体、金属晶体等四大典型晶体,如食盐、金刚石、干冰和各种金属等。同一晶体也有单晶和多晶(或粉晶)的区别。在实际中还存在混合型晶体。说到晶体,还得从结晶谈起。大家知道,所有物质都是由原子或分子构成的。众所周知,物质有三种聚集形态:气体、液体和固体。但是,你知道根据其内部构造特点,固体又可分为儿类吗?研究表明,固体可分为晶体、非晶体和准晶体三大类。几何形状晶体通常呈现规则的几何形状,就像有人特意加工出来的一样。其内部原子的排列十分规整严格,比士兵的方阵还要整齐得多。如果把晶体中任意一个原子沿某一方向平移一定距离,必能找到一个同样的原子。而玻璃、珍珠、沥青、塑料等非晶体,内部原子的排列则是杂乱无章的。准晶体是发现的一类新物质,其内部排列既不同于晶体,也不同于非晶体。究竞什么样的物质才能算作晶体晶体呢?首先,除液品外,晶体一般是固体形态。其次,组成物质的原子、分子或离子具有规律、周期性的排列,这样的物质就是晶体。但仅从外观上,用肉眼很难区分晶体、非晶体与准晶体。那么,如何才能快速鉴定出它们呢?一种最常用的技术是X光技术。用X光对固体进行结构分析,你很快就会发现,晶体和非晶体、准晶体是截然不同的三类固体
晶体内部结构中的质点(原子、离子、分子、原子团)有规则地在三维空间呈周期性重复 排列,组成一定形式的晶格,外形上表现为一定形状的几何多面体。组成某种几何多面体的 平面称为晶面,由于生长的条件不同,晶体在外形上可能有些歪斜,但同种晶体晶面间夹角 (晶面角)是一定的,称为晶面角不变原理。 晶体按其内部结构可分为七大晶系和 14 种晶格类型。 合成铋单晶体 晶都有一定的对称性,有 32 种对称元素系,对应的对称动作群称做晶体系点群。按照 内部质点间作用力性质不同,晶体可分为离子晶体、原子晶体、分子晶体、金属晶体等四大 典型晶体,如食盐、金刚石、干冰和各种金属等。同一晶体也有单晶和多晶(或粉晶)的区别。 在实际中还存在混合型晶体。说到晶体,还得从结晶谈起。大家知道,所有物质都是由原子 或分子构成的。众所周知,物质有三种聚集形态:气体、液体和固体。但是,你知道根据其 内部构造特点,固体又可分为几类吗?研究表明,固体可分为晶体、非晶体和准晶体三大类。 几何形状 晶体通常呈现规则的几何形状,就像有人特意加工出来的一样。其内部原子的排列十 分规整严格,比士兵的方阵还要整齐得多。如果把晶体中任意一个原子沿某一方向平移一定 距离,必能找到一个同样的原子。而玻璃、珍珠、沥青、塑料等非晶体,内部原子的排列则 是杂乱无章的。准晶体是发现的一类新物质,其内部排列既不同于晶体,也不同于非晶体。 究竟什么样的物质才能算作 晶体晶体呢?首先,除 液晶外,晶体一般是固体形态。其次,组成物质的原子、分子或离子具有规律、周期性的排 列,这样的物质就是晶体。 但仅从外观上,用肉眼很难区分晶体、非晶体与准晶体。那么,如何才能快速鉴定出 它们呢?一种最常用的技术是 X 光技术。用 X 光对固体进行结构分析,你很快就会发现,晶 体和非晶体、准晶体是截然不同的三类固体

为了描述晶体的结构,我们把构成晶体的原子当成一个点,再用假想的线段将这些代表原子的各点连接起来,就绘成了像图中所表示的格架式空间结构。这种用来描述原子在晶体中排列的几何空间格架,称为晶格。由于晶体中原子的排列是有规律的,可以从晶格中拿出一个完全能够表达晶格结构的最小单元,这个最小单元就叫作晶胞。许多取向相同的晶胞组成晶粒,由取向不同的晶粒组成的物体,叫做多晶体,而单晶体内所有的晶胞取向完全一致,常见的单晶如单晶硅、单晶石英。大家最常见到的一般是多晶体。由于物质内部原子排列的明显差异,导致了晶体与非晶体物理化学性质的巨大差异。例如,晶体有固定的熔点,当温度高到某一温度便立即熔化;而玻璃及其它非晶体则没有固定的熔点,从软化到熔化是一个较大的温度范围类别实例1.立方晶系:钻石明矾金铁铅2.正方晶体晶系:锡金红石白鸽3.斜方晶系:硫碘硝酸银4.单斜晶系:硼砂煎糖石膏5.三斜晶系:硫酸铜硼酸6.三方(菱形)晶系:砷水晶冰石墨7.六方晶系:镁锌铍镉钙特性晶体的分布非常广泛,自然界的固体晶体物质中,绝大多数是晶体。气体、液体和非晶物质在一定的合适条件下也可以转变成晶体。1.长程有序:晶体内部原子在至少在微米级范围内的规则排列。2.均匀性:晶体内部各个部分的宏观性质是相同的。3.各向异性:晶体中不同的方向上具有不同的物理性质。4.对称性:晶体的理想外形和晶体内部结构都具有特定的对称性。5.自限性:晶体具有自发地形成封闭几何多面体的特性
为了描述晶体的结构,我们把构成晶体的原子当成一个点,再用假想的线段将这些代 表原子的各点连接起来,就绘成了像图中所表示的格架式空间结构。这种用来描述原子在晶 体中排列的几何空间格架,称为晶格。由于晶体中原子的排列是有规律的,可以从晶格中拿 出一个完全能够表达晶格结构的最小单元,这个最小单元就叫作晶胞。许多取向相同的晶胞 组成晶粒,由取向不同的晶粒组成的物体,叫做多晶体,而单晶体内所有的晶胞取向完全一 致,常见的单晶如单晶硅、单晶石英。大家最常见到的一般是多晶体。 由于物质内部原子排列的明显差异,导致了晶体与非晶体物理化学性质的巨大差异。 例如,晶体有固定的熔点,当温度高到某一温度便立即熔化;而玻璃及其它非晶体则没有固 定的熔点,从软化到熔化是一个较大的温度范围。 类别实例 1.立方晶系:钻石 明矾 金铁铅 2.正方 晶体晶系:锡 金红石 白钨 3.斜方晶系:硫 碘 硝酸银 4.单斜晶系:硼砂 蔗糖石膏 5.三斜晶系:硫酸铜 硼酸 6.三方(菱形)晶系:砷 水晶 冰 石墨 7.六方晶系:镁 锌 铍 镉 钙 特性 晶体的分布非常广泛,自然界的固体 晶体物质中,绝 大多数是晶体。气体、液体和非晶物质在一定的合适条件下也可以转变成晶体。 1.长程有序:晶体内部原子在至少在微米级范围内的规则排列。 2.均匀性:晶体内部各个部分的宏观性质是相同的。 3.各向异性:晶体中不同的方向上具有不同的物理性质。 4.对称性:晶体的理想外形和晶体内部结构都具有特定的对称性。 5.自限性:晶体具有自发地形成封闭几何多面体的特性

6.解理性:晶体具有沿某些确定方位的晶体晶面劈裂的性质。7.最小内能:成型晶体内能最小。8.晶面角守恒:属于同种晶体的两个对应晶面之间的夹角恒定不变。具体介绍:均一性和异向性因为晶体是具有格子构造的固体,同一晶体的各个部分质点分布是相同的,所以同一晶体的各个部分的性质是相同的,此即晶体的均一性;同一晶体格子中,在不同的方向上质点的排列一般是不相同的,晶体的性质也随方向的不同而有所差异,此即晶体的异向性。最小内能与稳定性晶体与同种物质的非晶体、液体、气体比较,具品体有最小内能。晶体是具有格子构造的固体,其内部质点作规律排列。这种规律排列的质点是质点间的引力与压力达到平衡,使晶体的各个部分处手位能最低的结果对称性晶体的对称表现在晶体中相等的晶面,晶棱和角顶有规律的重复出现。这是由于它具有规律的格子构造。是其在三维空间周期性重复的体现。既晶体的对称性不仅表现在外部形态上,而且其内部构造也同样也是对称的。在晶体的外形以及其他宏观表现中还反映了晶体结构的对称性。晶体的理想外形或其结构都是对称图象。这类图象都能经过不改变其中任何两点间距离的操作后复原。这样的操作称为对称操作,平移、旋转、反映和倒反都是对称操作。能使一个图象复原的全部不等同操作,形成一个对称操作群
6.解理性:晶体具有沿某些确定方位的 晶体晶面劈裂的 性质。 7.最小内能:成型晶体内能最小。 8.晶面角守恒:属于同种晶体的两个对应晶面之间的夹角恒定不变。 具体介绍: 均一性和异向性 因为晶体是具有格子构造的固体,同一晶体的各个部分质点分布是相同的,所以同一 晶体的各个部分的性质是相同的,此即晶体的均一性;同一晶体格子中,在不同的方向上质 点的排列一般是不相同的,晶体的性质也随方向的不同而有所差异,此即晶体的异向性。 最小内能与稳定性 晶体与同种物质的非晶体、液体、气体比较,具 晶 体有最小内能。晶体是具有格子构造的固体,其内部质点作规律排列。这种规律排列的质点 是质点间的引力与斥力达到平衡,使晶体的各个部分处于位能最低的结果。 对称性 晶体的对称表现在晶体中相等的晶面,晶棱和角顶有规律的重复出现。这是由于它具 有规律的格子构造。是其在三维空间周期性重复的体现。既晶体的对称性不仅表现在外部形 态上,而且其内部构造也同样也是对称的。 在晶体的外形以及其他宏观表现中还反映了晶体结构的对称性。晶体的理想外形或其 结构都是对称图象。这类图象都能经过不改变其中任何两点间距离的操作后复原。这样的操 作称为对称操作,平移、旋转、反映和倒反都是对称操作。能使一个图象复原的全部不等同 操作,形成一个对称操作群

镓,一种很容易结在晶体结构中空间点阵所代表的成大块单晶的金属是与平移有关的对称性,此外,还可以含有与旋转、反映和倒反有关并能在宏观上反映出来的对称性,称为宏观对称性,它在晶体结构中必须与空间点阵共存,并互相制约。制约的结果有二:(1)晶体结构中只能存在1、2、3、4和6次对称轴(2)空间点阵只能有14种形式。n次对称轴的基本旋转操作为旋转360°n,因此,晶体能在外形和宏观中反映出来的轴对称性也只限于这些轴次。由于原子并不处于静止状态,存在着外来原子引起的点阵畸变以及一定的缺陷,基本结构虽然仍符合上述规则性,但绝不是如设想的那样完整无缺,存在数目不同的各种形式的体缺陷。另外还必须指出,绝大多数工业用的金属材料不是只由一个巨大的单晶所构成,而是由大量小块晶体组成,即多晶体。在整块材料内部,每个小晶体(或称晶粒)整个由三维空间界面与它的近邻隔开。这种界面称晶粒间界,简称晶界。晶界厚度约为两三个原子。大多数天然晶体都是一个原子接一个原子或一个分子接一个分子来完成的但是JilianBanfield和同事们发现了一些晶体,它们是由含有成百上于个原子的预制纳米晶体装配而成。据一篇相关的研究评述,这种晶体的块生长方式可能会对制造用于光学和电子设备(比如激光或硬盘)的人工材料有用。水铁石(ferrihydrite)的天然的预制晶体是由细菌合成的,在被水淹了的矿的烂泥里能找到,水铁石靠排列的纳米晶体连接起来而生长。这种生长晶体的方式引入特有的缺陷,可能会影响晶体在以后反应中的性质。种类晶体的一些性质取决于将分子联结成固体的结合力。这些力通常涉及原子或分子的最外层的电子(或称价电子)的相互作用。如果结合力强,晶体有较高的熔点。如果它们稍弱一些,晶体将有较低的熔点,也可能较易弯曲和变形。如果它们很弱,晶体只能在很低温度下形成,此时分子可利用的能量不多
在晶体结构中空间点阵所代表的 镓, 一种很容易结 成大块单晶的金属是与平移有关的对称性,此外,还可以含有与旋转、反映和倒反有关并能在 宏观上反映出来的对称性,称为宏观对称性,它在晶体结构中必须与空间点阵共存,并互相 制约。制约的结果有二: (1)晶体结构中只能存在 1、2、3、4 和 6 次对称轴, (2)空间点阵只能有 14 种形式。n 次对称轴的基本旋转操作为旋转 360°/n,因此,晶 体能在外形和宏观中反映出来的轴对称性也只限于这些轴次。 由于原子并不处于静止状态,存在着外来原子引起的点阵畸变以及一定的缺陷,基本 结构虽然仍符合上述规则性,但绝不是如设想的那样完整无缺,存在数目不同的各种形式的 晶体缺陷。另外还必须指出,绝大多数工业用的金属材料不是只由一个巨大的单晶所构成, 而是由大量小块晶体组成,即多晶体。在整块材料内部,每个小晶体(或称晶粒)整个由三维空 间界面与它的近邻隔开。这种界面称晶粒间界,简称晶 界。晶界厚度约为两三个原子。大多数天然晶体都是一个原子接一个原子或一个分子接一个 分子来完成的但是 JillianBanfield 和同事们发现了一些晶体,它们是由含有成百上千个原子 的"预制"纳米晶体装配而成。据一篇相关的研究评述,这种晶体的块生长方式可能会对制造 用于光学和电子设备(比如激光或硬盘)的人工材料有用。水铁石(ferrihydrite)的天然的预制 晶体是由细菌合成的,在被水淹了的矿的烂泥里能找到,水铁石靠排列的纳米晶体连接起来 而生长。这种生长晶体的方式引入特有的缺陷,可能会影响晶体在以后反应中的性质。 折叠种类 晶体的一些性质取决于将分子联结成固体的结合力。这些力通常涉及原子或分子的最 外层的电子(或称价电子)的相互作用。如果结合力强,晶体有较高的熔点。如果它们稍弱一 些,晶体将有较低的熔点,也可能较易弯曲和变形。如果它们很弱,晶体只能在很低温度下 形成,此时分子可利用的能量不多

有四种主要的晶体键。离子晶体由正离子和负离子构成,靠不同电荷之间的引力(离子键)结合在一起。氯化钠是离子晶体的一例。原子晶体(共价晶体)的原子或分子共享它们的价电子(共价键)。钻石、锗和硅是重要的共价晶体。金属晶体是金属的原子变为离子,被自由的价电子所包围,它们能够容易地从一个原子运动到另一个原子,可形象的描述为沉浸在直由电子的海洋里(金属键)。当这些电子全在同一方向运动时,它们的运动称为电流。分子晶体的分子完全不分享它们的电子。它们的结合是由于从分子的一端到另一端电场有微小的变动。因为这个结合力很弱(范德华力和氢键),这些晶体在很低的温度下就熔化,且硬度极低。典型的分子结晶如固态氧和冰。在离子晶体中,电子从一个原子转移到另一个原子。共价晶体的原子分享它们的价电子。金属原子的一端有少量的负电荷,另一端有少量的正电荷。一个弱的电引力使分子就位。用来制作工业用的晶体的技术之一,是从熔液中生长。籽晶可用来促进单晶体的形成。在这个工序里,籽晶降落到装有熔融物质的容器中。籽晶周围的熔液冷却,它的分子就依附在籽晶上。这些新的晶体分子承接籽晶的取向,形成了一个大的单晶体。蓝宝石和红宝石的基本成分是氧化铝,它的熔点高,制成一个盛装它的熔液的容器是困难的。人工合成蓝宝石和红宝石是用维尔纳叶法(焰熔法)制成,即将氧化铝粉和少量上色用的钛、铁或铬粉,通过火焰下滴到籽晶上。火焰将粉熔解,然后在籽晶上重新结晶。生长人造钻石需要高于1600℃的温度和60000倍大气压。人造钻石砂粒小且黑,它们适宜工业应用。区域熔化过程用来纯化半导体工业中的硅晶体。一个单晶体垂直悬挂在硅棒的项端上。在两者接触处加热,棒的顶端熔化,并在单晶体上重结晶,然后将加热处慢慢地沿棒下移。缺陷分类晶体缺陷各种偏离晶体结构中质点周期重复排列的因素,严格说,造成晶体点阵结构周期势场畸变的一切因素。如晶体中进入了一些杂质。这些杂质也会占据一定的位置,这样破坏了原质点排列的周期性,在二十世纪中期,发现晶体中缺陷的存在,它严重影响晶体性质,有些是决定性的,如半导体导电性质,几乎完全是由外来杂质原子和缺陷存在决定的,许多离子晶体的颜色、发光等。另外,固体的强度,陶瓷、耐火材料的烧结和固相反应等等均与缺陷有关,晶体缺陷是近三、四年国内外科学研究十分注意的一个内容。根据缺陷的作用范围把真实晶体缺陷分四类
有四种主要的晶体键。离子晶体由正离子和负离子构成,靠不同电荷之间的引力(离子 键)结合在一起。氯化钠是离子晶体的一例。原子晶体(共价晶体)的原子或分子共享它们的价 电子(共价键)。钻石、锗和硅是重要的共价晶体。金属晶体是金属的原子变为离子,被自由 的价电子所包围,它们能够容易地从一个原子运动到另一个原子,可形象的描述为沉浸在自 由电子的海洋里(金属键)。当这些电子全在同一方向运动时,它们的运动称为电流。分子晶 体的分子完全不分享它们的电子。它们的结合是由于从分子的一端到另一端电场有微小的变 动。因为这个结合力很弱(范德华力和氢键),这些晶体在很低的温度下就熔化,且硬度极低。 典型的分子结晶如固态氧和冰。 在离子晶体中,电子从一个原子转移到另一个原子。共价晶体的原子分享它们的价电 子。金属原子的一端有少量的负电荷,另一端有少量的正电荷。一个弱的电引力使分子就位。 用来制作工业用的晶体的技术之一,是从熔液中生长。籽晶可用来促进单晶体的形成。 在这个工序里,籽晶降落到装有熔融物质的容器中。籽晶周围的熔液冷却,它的分子就依附 在籽晶上。这些新的晶体分子承接籽晶的取向,形成了一个大的单晶体。蓝宝石和红宝石的 基本成分是氧化铝,它的熔点高,制成一个盛装它的熔液的容器是困难的。人工合成蓝宝石 和红宝石是用维尔纳叶法(焰熔法)制成,即将氧化铝粉和少量上色用的钛、铁或铬粉,通过 火焰下滴到籽晶上。火焰将粉熔解,然后在籽晶上重新结晶。 生长人造钻石需要高于 1600℃的温度和 60000 倍大气压。人造钻石砂粒小且黑,它们 适宜工业应用。区域熔化过程用来纯化半导体工业中的硅晶体。一个单晶体垂直悬挂在硅棒 的顶端上。在两者接触处加热,棒的顶端熔化,并在单晶体上重结晶,然后将加热处慢慢地 沿棒下移。 折叠缺陷 折叠分类 晶体缺陷各种偏离晶体结构中质点周期重复排列的因素,严格说,造成晶体点阵结构 周期势场畸变的一切因素。 如晶体中进入了一些杂质。这些杂质也会占据一定的位置,这样破坏了原质点排列的 周期性,在二十世纪中期,发现晶体中缺陷的存在,它严重影响晶体性质,有些是决定性的, 如半导体导电性质,几乎完全是由外来杂质原子和缺陷存在决定的,许多离子晶体的颜色、 发光等。另外,固体的强度,陶瓷、耐火材料的烧结和固相反应等等均与缺陷有关,晶体缺 陷是近三、四年国内外科学研究十分注意的一个内容。 根据缺陷的作用范围把真实晶体缺陷分四类:

点缺陷:在三维尺寸均很小,只在某些位置发生,只影响邻近几个原子。晶体线缺陷:在二维尺寸小,在另一维尺寸大,可被电镜观察到。面缺陷:在一维尺寸小,在另二维尺寸大,可被光学显微镜观察到。体缺陷:在三维尺寸较大,如镶嵌块,沉淀相,空洞,气泡等。按形成的原因不同分三类:1热缺陷(晶格位置缺陷)在晶体点阵的正常格点位出现空位,不该有质点的位置出现了质点(间隙质点)。2组成缺陷外来质点(杂质)取代正常质点位置或进入正常结点的间隙位置。3电荷缺陷晶体中某些质点个别电子处于激发状态,有的离开原来质点,形成自由电子,在原来电子轨道上留下了电子空穴。符号及反应方程式1.缺陷符号及缺陷反应方程式缺陷符号以二元化合物MX为例(1)晶格空位:正常结点位没有质点,VM,VX(2)间隙离子:除正常结点位置外的位置出现了质点,Mi,Xx(3)错位离子:M排列在X位置,或X排列在M位置上,若处在正常结点位置上,则MM,XX(4)取代离子:外来杂质L进入晶体中,若取代M,则LM,若取代X,则LX,若占据间隙位,则Li
点缺陷:在三维尺寸均很小,只在某些位置发生,只影响邻近几个原子。 晶体 线缺陷:在二维尺寸小,在另一维尺寸大,可被电镜观察到。 面缺陷:在一维尺寸小,在另二维尺寸大,可被光学显微镜观察到。 体缺陷:在三维尺寸较大,如镶嵌块,沉淀相,空洞,气泡等。 按形成的原因不同分三类: 1 热缺陷(晶格位置缺陷) 在晶体点阵的正常格点位出现空位,不该有质点的位置出现了质点(间隙质点)。 2 组成缺陷 外来质点(杂质)取代正常质点位置或进入正常结点的间隙位置。 3 电荷缺陷 晶体中某些质点个别电子处于激发状态,有的离开原来质点,形成自由电子,在原来 电子轨道上留下了电子空穴。 符号及反应方程式 1. 缺陷符号及缺陷反应方程式 缺陷符号 以二元化合物 MX 为例 (1)晶格空位:正常结点位没有质点,VM,VX (2)间隙离子:除正常结点位置外的位置出现了质点,Mi ,Xx (3)错位离子:M 排列在 X 位置,或 X 排列在 M 位置上,若处在正常结点位置上,则 MM,XX (4)取代离子:外来杂质 L 进入晶体中,若取代 M,则 LM,若取代 X,则 LX,若占据间 隙位,则 Li

(5)自由电子e(代表存在一个负电荷),,表示有效电荷。晶体(5)电子空穴h(代表存在一个正电荷),·表示有效正电荷如:从NaCI晶体中取走一个Na+,留下一个空位造成电价不平衡,多出负一价。相当于取走Na原子加一个负有效负电荷,e失去→自由电子,剩下位置为电子空穴h(7)复合缺陷同时出现正负离子空位时,形成复合缺陷,双空位。VM+VX-(VM- VX)缺陷反应方程式必须遵守三个原则(1)位置平衡--反应前后位置数不变(相对物质位置而言)(2)质点平衡--反应前后质量不变(相对加入物质而言)(3)电价平衡--反应前后呈电中性例:将CaCI2引入KCI中将CaO引入ZrO2中注意:只从缺陷反应方程看,只要符合三个平衡就是对的,但实际上往往只有一种是对的,这要知道其它条件才能确定哪个缺陷反应是正确的。确定(1)式密度增加,要根据具体实验和计算。热缺陷(晶格位置缺陷)
(5)自由电子 e'(代表存在一个负电荷),表示有效电荷。 晶体 (5)电子空穴 h·(代表存在一个正电荷),·表示有效正电荷 如:从 NaCl 晶体中取走一个 Na+,留下一个空位造成电价不平衡,多出负一价 。相当 于取走 Na 原子加一个负有效负电荷,e 失去→自由电子,剩下位置为电子空穴 h· (7)复合缺陷 同时出现正负离子空位时,形成复合缺陷,双空位。 VM+VX→(VM- VX) 缺陷反应方程式 必须遵守三个原则 (1)位置平衡-反应前后位置数不变(相对物质位置而言) (2)质点平衡-反应前后质量不变(相对加入物质而言) (3)电价平衡-反应前后呈电中性 例:将 CaCl2 引入 KCl 中: 将 CaO 引入 ZrO2 中 注意:只从缺陷反应方程看,只要符合三个平衡就是对的,但实际上往往只有一种是对 的,这要知道其它条件才能确定哪个缺陷反应是正确的。 确定(1)式密度增加,要根据具体实验和计算。 折叠热缺陷 (晶格位置缺陷)

只要晶体的温度高于绝对零度,原子就要吸收热能而运动,但由于固体质点是牢固结合在一起的,或者说晶体中每一个质点的运动必然受到周围质点结合力的限制而只能以质点的平衡位置为中心作微小运动,振动的幅度随温度升高而增大,温度越高,平均热能越大,而相应一定温度的热能是指原子的平均动能,当某些质点大于平均动能就要离开平衡位置,在原来的位置上留下一个空位而形成缺陷,实际上在任何温度下总有少数质点摆脱周围离子的束缚而离开原来的平衡位置,这种由于热运动而产生的点缺陷-热缺陷。热缺陷两种基本形式:a费仑克尔缺随b-肖特基缺陷(1)弗仑克尔缺陷具有足够大能量的原子(离子)离开平衡位置后,挤入晶格间隙中,形成间隙原子离子)在原来位置上留下空位。特点空位与间隙粒子成对出现,数量相等,晶体体积不发生变化。在晶体中弗仑克尔缺陷的数目多少与晶体结构有很大关系,格点位质点要进入间隙位间隙必须要足够大,如萤石(CaF2)型结构的物质空隙较大,易形成,而NaCI型结构不易形成。总的来说,离子晶体,共价晶体形成该缺陷困难。(2)肖特基缺陷表面层原子获得较大能量,离开原来格点位跑到表面外新的格点位,原来位置形成空位这样晶格深处的原子就依次填入,结果表面上的空位逐渐转移到内部去。特点:体积增大,对离子晶体、正负离子空位成对出现,数量相等。结构致密易形成肖特基缺陷。晶体热缺陷的存在对晶体性质及一系列物理化学过程,导电、扩散、固相反应、烧结等产生重要影响,适当提高温度,可提高缺陷浓度,有利于扩散,烧结作用,外加少量填加剂也可提高热缺陷浓度,有些过程需要最大限度避免缺陷产生,如单晶生产,要非常快冷却。3.组成缺陷主要是一种杂质缺陷,在原晶体结构中进入了杂质原子,它与固有原子性质不同,破坏了原子排列的周期性,杂质原子在晶体中占据两种位置(1)填隙位(2)格点位4.电荷缺陷(Chargedefect)从物理学中固体的能带理论来看,非金属固体具有价带,禁带和导带,当在OR时,导带全部完善,价带全部被电子填满,由于热能作用或其它能量传递过程,价带中电子得到一能量Eg,而被激发入导带,这时在导带中存在一个电子,在价带留一孔穴,孔穴也可以导电,这样虽末破坏原子排列的周期性,在由于孔穴和电子分别带有正负电荷,在它们附近形成一个附加电场,引起周期势场畸变,造成晶体不完整性称电荷缺陷
只要晶体的温度高于绝对零度,原子就要吸收热能而运动,但由于固体质点是牢固结 合在一起的,或者说晶体中每一个质点的运动必然受到周围质点结合力的限制而只能以质点 的平衡位置为中心作微小运动,振动的幅度随温度升高而增大,温度越高,平均热能越大, 而相应一定温度的热能是指原子的平均动能,当某些质点大于平均动能就要离开平衡位置, 在原来的位置上留下一个空位而形成缺陷,实际上在任何温度下总有少数质点摆脱周围离子 的束缚而离开原来的平衡位置,这种由于热运动而产生的点缺陷-热缺陷。 热缺陷两种基本形式: a-弗仑克尔缺陷, b-肖特基缺陷 (1)弗仑克尔缺陷 具有足够大能量的原子(离子)离开平衡位置后,挤入晶格间隙中,形成间隙原子离子), 在原来位置上留下空位。 特点:空位与间隙粒子成对出现,数量相等,晶体体积不发生变化。 在晶体中弗仑克尔缺陷的数目多少与晶体结构有很大关系,格点位质点要进入间隙位, 间隙必须要足够大,如萤石(CaF2)型结构的物质空隙较大,易形成,而 NaCl 型结构不易形 成。总的来说,离子晶体,共价晶体形成该缺陷困难。 (2)肖特基缺陷 表面层原子获得较大能量,离开原来格点位跑到表面外新的格点位,原来位置形成空 位这样晶格深处的原子就依次填入,结果表面上的空位逐渐转移到内部去。 特点:体积增大,对离子晶体、正负离子空位成对出现,数量相等。结构致密易形成肖 特基缺陷。 晶体热缺陷的存在对晶体性质及一系列物理化学过程,导电、扩散、固相反应、烧结 等产生重要影响,适当提高温度,可提高缺陷浓度,有利于扩散,烧结作用,外加少量填加 剂也可提高热缺陷浓度,有些过程需要最大限度避免缺陷产生, 如单晶生产,要非常快冷 却。 3. 组成缺陷 主要是一种杂质缺陷,在原晶体结构中进入了杂质原子,它与固有原子性质不同,破 坏了原子排列的周期性,杂质原子在晶体中占据两种位置(1)填隙位(2)格点位 4. 电荷缺陷(Charge defect) 从物理学中固体的能带理论来看,非金属固体具有价带,禁带和导带,当在 OR 时, 导带全部完善,价带全部被电子填满,由于热能作用或其它能量传递过程,价带中电子得到 一能量 Eg,而被激发入导带,这时在导带中存在一个电子,在价带留一孔穴,孔穴也可以 导电,这样虽末破坏原子排列的周期性,在由于孔穴和电子分别带有正负电荷,在它们附近 形成一个附加电场,引起周期势场畸变,造成晶体不完整性称电荷缺陷

例:纯半导体禁带较宽,价电带电子很难越过禁带进入导带,导电率很低,为改善导电性,可采用掺加杂质的办法,如在半导体硅中掺入P和B,掺入一个P,则与周围Si原子形成四对共价键,并导出一个电子,叫施主型杂质,这个多余电子处于半束缚状态,只须填加很少能量,就能跃迁到导带中,它的能量状态是在禁带上部靠近导带下部的一个附加能级上,叫施主能级,叫n型半导体。当掺入一个B,少一个电子,不得不向其它Si原子夺取一个电子补充,这就在Si原子中造成空穴,叫受主型杂质,这个空穴也仅增加一点能量就能把价带中电子吸过来,它的能量状态在禁带下部靠近价带顶部一个附加能级,叫受主能级叫P型半导体,自由电子,空穴都是晶体一种缺点缺陷在实践中有重要意义:烧成烧结,固相反应,扩散,对半导体,电绝缘用陶瓷有重要意义,使晶体着色等。线缺陷实际晶体在结晶时,受到杂质,温度变化或振动产生的应力作用或晶体由于受到打击,切割等机械应力作用,使晶体内部质点排列变形,原子行列间相互滑移,不再符合理想晶体的有序排列,形成线状缺陷。应错直观定义:晶体中已滑移面与未滑移面的边界线。这种线缺陷又称位错,注意:位错不是一条几何线,而是一个有一定宽度的管道,位错区域质点排列严重畸变,有时造成晶体面网发生错动。对晶体强度有很大影响。位错主要有两种:刃型位错和螺型位错。刃型位错其形式可以设想为:在一完整晶体,沿BCEF晶面横切一刀,从BCAD,将ABCD面上半部分,作用以压力,使之产生滑移,距离(柏氏矢量晶格常数或数倍)滑移面BCEF,滑移区ABCD,未滑移区ADEF,AD为已滑移区交界线-位错线正面看简图:如上图滑移上部多出半个原子面,就象刀刃一样(劈木材)称刃型位错。特点:滑移方向与位错线垂直,符号工,有多余半片原子面。螺型位错其形成可设想为:在一完整晶体,沿ABCD晶面横切一刀,在ABCD面上部分沿X方向施一力θ,使其生产滑移,滑移区ABCD未滑移区ADEF,交界线AD(位错线)特点:滑移方向与位错线平行,与位错线垂直的面不是平面,呈螺施状,称螺型位错
例:纯半导体禁带较宽,价电带电子很难越过禁带进入导带,导电率很低,为改善导电 性,可采用掺加杂质的办法,如在半导体硅中掺入 P 和 B,掺入一个 P,则与周围 Si 原子 形成四对共价键,并导出一个电子,叫施主型杂质,这个多余电子处于半束缚状态,只须填 加很少能量,就能跃迁到导带中,它的能量状态是在禁带上部靠近导带下部的一个附加能级 上,叫施主能级,叫 n 型半导体。当掺入一个 B,少一个电子,不得不向其它 Si 原子夺取 一个电子补充,这就在 Si 原子中造成空穴,叫受主型杂质,这个空穴也仅增加一点能量就 能把价带中电子吸过来,它的能量状态在禁带下部靠近价带顶部一个附加能级,叫受主能级, 叫 P 型半导体,自由电子,空穴都是晶体一种缺 点缺陷在实践中有重要意义:烧成烧结,固相反应,扩散,对半导体,电绝缘用陶瓷有 重要意义,使晶体着色等。 线缺陷 实际晶体在结晶时,受到杂质,温度变化或振动产生的应力作用或晶体由于受到打击, 切割等机械应力作用,使晶体内部质点排列变形,原子行列间相互滑移,不再符合理想晶体 的有序排列,形成线状缺陷。 位错直观定义:晶体中已滑移面与未滑移面的边界线。 这种线缺陷又称位错,注意:位错不是一条几何线,而是一个有一定宽度的管道,位错 区域质点排列严重畸变,有时造成晶体面网发生错动。对晶体强度有很大影响。 位错主要有两种:刃型位错和螺型位错。 折叠刃型位错 其形式可以设想为:在一完整晶体,沿 BCEF 晶面横切一刀,从 BCAD,将 ABCD 面上 半部分,作用以压力 δ,使之产生滑移,距离(柏氏矢量晶格常数或数倍)滑移面 BCEF,滑 移区 ABCD,未滑移区 ADEF,AD 为已滑移区交界线-位错线。 正面看简图:如上图 滑移上部多出半个原子面,就象刀刃一样(劈木材)称刃型位错。 特点:滑移方向与位错线垂直,符号⊥,有多余半片原子面。 折叠螺型位错 其形成可设想为:在一完整晶体,沿 ABCD 晶面横切一刀,在 ABCD 面上部分沿 X 方 向施一力 δ,使其生产滑移,滑移区 ABCD 未滑移区 ADEF,交界线 AD(位错线) 特点:滑移方向与位错线平行,与位错线垂直的面不是平面,呈螺施状,称螺型位错