点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:531.27KB 文档页数:7
由于转炉冶炼过程中的热力学和动力学反应复杂,副枪控制模型和传统的烟气分析模型存在很大的局限性,导致了转炉冶炼终点碳含量的预测精度偏低,是实现智能炼钢的主要技术瓶颈. 针对上述问题,提出了基于烟气分析的炼钢过程函数型数字孪生模型. 首先,利用烟气分析得到连续监测的实时数据,以此来实时监控转炉熔池内钢水的碳氧反应状态; 然后,根据熔池反应所处的不同阶段,利用函数型数据分析方法建立吹炼前期和吹炼后期的函数型预测模型; 在此基础上,按照吹炼前期和吹炼后期这两个阶段来分别自动修正模型中的系数函数,从而能在复杂的实际工况条件下完成对熔池碳含量的准确预测. 通过260 t氧气转炉的工业应用实例,证实函数型数字孪生模型具有良好的自学习和自适应能力,对异常冶炼状态具有良好的鲁棒性,可以实现全过程的熔池碳含量动态预测,终点碳质量分数在± 0. 02% 范围内的命中率为95%. 利用函数型数字孪生模型在拉碳阶段对钢水中碳含量的预测值来控制终吹点. 更为重要的是,在保证入炉原料成分、温度、质量等参数稳定的前提下,采用该模型可以有望取消基于副枪的停吹取样步骤,从而降低生产成本,提高产品质量和生产效率,具有广泛的工业应用前景
文档格式:PDF 文档大小:1.27MB 文档页数:9
选取某4000 m3级别高炉2014年至2019年时间范围内的日平均数据,以铁水温度为目标函数,首先对铁水温度的特征参量进行线性与非线性相关性分析、特征选择与规范化处理,获取了显著影响铁水温度的正负相关性特征参量。在此基础上,基于支持向量回归与极限学习机两种算法对铁水温度构建预测模型,模型均可对铁水温度实现有效预测,基于支持向量回归算法构建的预测模型较优,预测平均绝对误差为4.33 ℃,±10 ℃误差范围内的命中率为94.0%
文档格式:PDF 文档大小:386.22KB 文档页数:6
针对熔融气化炉冷煤气成分含量,提出了基于熵权模糊C均值聚类和偏最小二乘的COREX冷煤气成分预测方法.建模过程中首先根据料单中各种原料的单耗量,利用熵权模糊C均值聚类的方法将料单聚类成若干种料单类别,然后针对不同的料单类别,利用偏最小二乘法分别建立冷煤气成分预测模型.对宝钢COREX-1#炉实际生产数据验证结果表明:该方法可以有效地建立COREX冷煤气成分预测模型,具有较好的预测精度
文档格式:PDF 文档大小:444.17KB 文档页数:4
以BP算法为基础开发了ANN学习预测系统,用于宝钢IF钢大生产产品性能预测.同时,应用在宝钢IF钢大生产数据对该系统进行了测试和分析,并与多元线性回归结果进行预测精度比较.结果表明,ANN学习预测系统,除σ0.2误差较高(9.0%)外,σb,δ,r和n值均<5.0%,且比多线性回归方法精度高
文档格式:PDF 文档大小:438.51KB 文档页数:4
基于人工神经网络建立了反向凝固过程中的性能预测模型,实现了对铸带厚度和新相层晶粒度的全面预测;探讨了凝固过程中的主要工艺参数对上述性能的综合影响,为反向凝固性能的综合预测提供了简便的新手段.研究表明,新生相晶粒度随钢水过热度、母带厚度、浸入时间变化对其影响不显著,而钢水过热度、母带厚度、浸入时间变化对铸带厚度的影响较大.该模型的预测结果与实测的结果较为接近
文档格式:PDF 文档大小:422.85KB 文档页数:5
为了准确预测管道在不同应力比交替作用下的剩余寿命,在疲劳裂纹扩展速率实验的基础上,建立了一种新的含缺陷管道剩余寿命预测方法,即不同应力比交替作用下单参数疲劳寿命预测方法.该方法全面考虑了管线运行过程中不同应力比交替作用引起的破坏.以X52管线钢为例,通过模拟天然气实际运行情况(R=0.1和R=0.6交替作用)预测了其剩余寿命
文档格式:PDF 文档大小:4.6MB 文档页数:9
分析了影响转炉冶炼终点钢水中锰含量的因素, 针对基于BP神经网络算法的转炉冶炼终点锰含量预测模型存在的收敛速度慢, 预测精度低等问题, 提出了一种基于极限学习机(ELM) 算法建模的新思路, 并引入正则化以及改进粒子群优化算法(IPSO), 建立了基于改进粒子群算法优化的正则化极限学习机(IPSO-RELM) 的转炉终点锰含量预测模型; 应用国内某炼钢厂转炉实际生产数据对模型进行训练和验证, 并与基于BP、ELM和RELM算法的三类模型进行比较.结果表明, 采用IPSO-RELM方法构建的模型, 锰含量预测误差在±0. 025%范围内的命中率达到94%, 均方误差为2. 18×10-8, 拟合优度R2为0. 72, 上述三项指标均显著优于其他三类模型, 此外, 该模型还具有良好的泛化能力, 对于转炉实际冶炼过程具有一定的指导意义
文档格式:PDF 文档大小:679.95KB 文档页数:9
针对高炉关键异常炉况悬料难以预测的问题,基于D-S证据理论,提出一种综合模糊专家推理和后验概率最小二乘支持向量机的悬料预测方法.首先,结合高炉生产过程和悬料现象,分析悬料形成的内在机理;其次,通过模糊专家推理提取基于专家规则的主观证据,再通过建立后验概率最小二乘支持向量机模型提取基于数据内在客观规律的客观证据;最后,基于D-S证据理论完成主客观证据融合,实现悬料预测.该方法充分利用专家经验和最小二乘支持向量机的自学习能力,能够提高预测精度.仿真结果表明本文提出的方法有效、准确
文档格式:PPT 文档大小:452KB 文档页数:57
一、什么是时间序列预测 二、时间序列预测的常用方法 三、时间序列预测法的优缺点分析
文档格式:DOC 文档大小:856KB 文档页数:27
一、矿坑涌水量预测的内容、方法、步骤与特点 (一)矿井涌水量预测的内容及要求 矿坑涌水量预测是一项重要而复杂的工作是矿床水文地质勘探的重要组成部分。 矿坑涌水量是指矿山开拓与开采过程中,单位时间内涌入矿坑(包括井、巷和开采系 统)的水量。通常以m3/h表示。它是确定矿床水文地质条件复杂程度的重要指标之一,关 系到矿山的生产条件与成本,对矿床的经济技术评价有很大的影响
首页上页7891011121314下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有