点击切换搜索课件文库搜索结果(435)
文档格式:PPT 文档大小:280KB 文档页数:15
例3设n阶方阵A的伴随矩阵为A*,证明: (1)若A=0,则A=0 (2)a=ain-1 证明:由伴随矩阵的定义显然有 AA*=AA=AIEn, 两边取行列式即得 JAllAdet()=a, 故当A不等于0时,(2)是显然的。而 只要我们证明了(1),则(2)对于A|=0 的矩阵A也是成立的。下面我们证明(1)
文档格式:PPT 文档大小:215KB 文档页数:26
称为m行n列矩阵,简称为mxn矩阵。这mxn个 数称为矩阵A的元素,a叫做矩阵A的第行第列 元素。元素是实数的矩阵叫做实矩阵,元素是复 数的矩阵叫做复矩阵。 本教程中的矩阵除特别说明外,都指实矩阵。 通常用大写的拉丁字母A、B、C等表示矩阵。有 时为了指明矩阵的第行第列元素为a,可将A记 作A=(a)mn或A=(an),也可将m×n矩阵A记为 mxn° 当A的行数与列数相等时,称A为n阶方阵 或n阶矩阵。显然,一阶矩阵就是一个数
文档格式:PPT 文档大小:625KB 文档页数:27
本节进一步讨论方阵的内在性质,加深对矩阵的认识和理解,以便更好地使用矩阵解决线性代数中的问题
文档格式:PPT 文档大小:659KB 文档页数:92
§1 矩阵的概念 §2 矩阵的运算 §3 方阵与分块矩阵 §4 矩阵的初等变换与矩阵的秩 §5 可逆矩阵
文档格式:DOC 文档大小:408KB 文档页数:9
5.1矩阵的特征值与特征向量 定义:对于n阶方阵A,若有数λ和向量x≠0满足Ax=x,称λ为A 的 特征值,称x为A的属于特征值λ的特征向量 特征方程:Ax=λx(A-E)x=0或者(ae-A)x=0 (A-E)x=0有非零解det(-E)=0
文档格式:PPT 文档大小:622KB 文档页数:13
例2阶方阵 一、投影变换
文档格式:PPT 文档大小:500KB 文档页数:16
一、引言 纯量阵λE与任何同阶矩阵的乘法都满足交换律,即
文档格式:PPT 文档大小:659.5KB 文档页数:29
一.特征值与特征向量的定义 二.特征值与特征向量的性质 三.特征值与特征向量的求法
文档格式:PPT 文档大小:389KB 文档页数:13
一正交矩阵的定义与性质 1.定义 若n阶方阵A满足A'A=E,则称A为正交矩阵 2.性质 (1)=±1;(:'=e,A'A=1,a=1) (2)A,B为正交矩阵,则AB也是正交矩阵; (:(AB)(AB)=B'(A'A) B=B'B=E.) (3)A是正交矩阵A-1=A;AA=E) (4)A是正交矩阵A也是正交矩阵;
文档格式:DOC 文档大小:363KB 文档页数:25
特征值 一、基本要求 1.理解矩阵的特征值、特征向量的概念并掌握其求法; 2.了解相似矩阵的概念、性质及矩阵对角化的充要条件,会化矩阵为相似对角形 二、内容提要 1.特征值与特征向量 设A为n阶方阵,a为n维非零列向量,为一个数,使得则称为A的一个特征值,a为A对应于的一个特征向量 2.特征向量的性质 (1)对应于不同特征值的特征向量是线性无关的 (2)同一特征值的特征向量a1,a2,…,am的任意非零线性组合
首页上页910111213141516下页末页
热门关键字
搜索一下,找到相关课件或文库资源 435 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有