点击切换搜索课件文库搜索结果(330)
文档格式:PPT 文档大小:622KB 文档页数:13
例2阶方阵 一、投影变换
文档格式:PPT 文档大小:500KB 文档页数:16
一、引言 纯量阵λE与任何同阶矩阵的乘法都满足交换律,即
文档格式:PPT 文档大小:659.5KB 文档页数:29
一.特征值与特征向量的定义 二.特征值与特征向量的性质 三.特征值与特征向量的求法
文档格式:PPT 文档大小:389KB 文档页数:13
一正交矩阵的定义与性质 1.定义 若n阶方阵A满足A'A=E,则称A为正交矩阵 2.性质 (1)=±1;(:'=e,A'A=1,a=1) (2)A,B为正交矩阵,则AB也是正交矩阵; (:(AB)(AB)=B'(A'A) B=B'B=E.) (3)A是正交矩阵A-1=A;AA=E) (4)A是正交矩阵A也是正交矩阵;
文档格式:DOC 文档大小:363KB 文档页数:25
特征值 一、基本要求 1.理解矩阵的特征值、特征向量的概念并掌握其求法; 2.了解相似矩阵的概念、性质及矩阵对角化的充要条件,会化矩阵为相似对角形 二、内容提要 1.特征值与特征向量 设A为n阶方阵,a为n维非零列向量,为一个数,使得则称为A的一个特征值,a为A对应于的一个特征向量 2.特征向量的性质 (1)对应于不同特征值的特征向量是线性无关的 (2)同一特征值的特征向量a1,a2,…,am的任意非零线性组合
文档格式:DOC 文档大小:82KB 文档页数:2
7-1幂零线性变换的 Jordan标准型 A是数域K上n维线性空间V上的线性变换,如果存在正整数m,使A=0,则称A是一个 幂零线性变换. 对数域K上n阶方阵A,如果存在正整数m,使Am=0,则称A为幂零矩阵 命题幂零线性变换的特征值等于0 证明设是V上幂零线性变换A的特征值,则存在V中非零向量a,使得 Aa= 假设A=0
文档格式:DOC 文档大小:266.5KB 文档页数:6
对应特征值礼=-1只有1个线性无关的特征向量,而特征方程的基础解系为5,全体特征向量为x=k1l1(k1≠0)例9设方阵A的特征值A1≠2,对应的特征向量分别为x1,x2,证明: (1)x1-x2不是A的特征向量;
文档格式:DOC 文档大小:101KB 文档页数:2
2.正定二次型: 正惯性指数等于变元个数的实二次型称为正定二次型: 正定二次型的(实对称)矩阵称为正定矩阵 设A=(an)为n阶实对称矩阵,称A的r阶子式 12 2 为方阵的顺序主子式。 定理设f是实二次型,则下述四条等价:
文档格式:DOC 文档大小:51.5KB 文档页数:1
准对角矩阵称为 Jordan形矩阵,而主对角线上的小块方阵J称为 Jordan块 定理设A是数域K上的n维线性空间V上的线性变换.如果A的特征值全属于K, 则A在V的某组基下的矩阵为 Jordan形,并且在不计 Jordan块的意义下 Jordan形是唯 一的. 证明:对n作数学归纳法
文档格式:PPT 文档大小:767KB 文档页数:62
第二章矩阵理论 第一节矩阵的概念 第二节矩阵的远算 第三节方阵与分块矩阵 第四节阵的初等变换与瓴阵的秩 第五节可矩阵
首页上页910111213141516下页末页
热门关键字
搜索一下,找到相关课件或文库资源 330 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有