点击切换搜索课件文库搜索结果(1372)
文档格式:PPT 文档大小:4.65MB 文档页数:297
第一节 函数 一、基本概念 二、函数概念 三、函数的特性 四、反函数 五、小结 思考题 第二节 初等函数 一、基本初等函数 二、复合函数 初等函数 三、双曲函数与反双曲函数 四、小结 思考题 第三节 数列的极限 一、概念的引入 二、数列的定义 三、数列的极限 四、数列极限的性质 五、小结 思考题 第四节 函数的极限 一、自变量趋向无穷大时函数的极限 二、自变量趋向有限值时函数的极限 三、函数极限的性质 四、小结 思考题 第五节 无穷小与无穷大 一、无穷小 二、无穷大 三、无穷小与无穷大的关系 四、小结 思考题 第六节 极限运算法则 一、极限运算法则 二、求极限方法举例 三、小结 思考题 第七节 极限存在准则、两个重要极限 一、极限存在准则 二、两个重要极限 三、小结 第八节 无穷小的比较 一、无穷小的比较 二、等价无穷小代换 第九节 函数的连续性与间断点 一、函数的连续性 二、函数的间断点 三、小结 第十节 连续函数的运算与初等函数的连续性 一、四则运算的连续性 二、反函数与复合函数的连续性 三、初等函数的连续性 四、小结 第十一节 闭区间上连续函数的性质 一、最大值和最小值定理 二、介值定理 三、小结
文档格式:PDF 文档大小:1.33MB 文档页数:239
(一)理论课程 1《空间解析几何》 2《离散数学》 3《时间序列分析》 4《数值计算方法》 5《运筹与优化》 6《Python 程序设计》 7《常微分方程》 8《大数据技术原理及应用》 9《复变函数论》 10《概率统计》 11《高等代数》 12《面向对象程序设计》 13《数据结构与算法》 14《数据库原理及应用》 15《数据挖掘》 16《数理统计》 17《数学分析(1)》 18《数学分析(2)》 19《数学建模(1)》 20《数学建模(2)》 21《数学软件及应用》 (二)实验课程 22《时间序列分析》 23《数据结构与算法》 24《数学软件及应用》 25《数值计算方法》 26《Python 程序设计》 27《大数据技术原理及应用》实验 28《面向对象程序设计》 29《数据库原理及应用》课程 30《数据挖掘》 31《数理统计》 (三)实践课程 32《专业教育》 33《web 数据挖掘与电子商务项目实训》 34《技能实训》教学大纲 35《客户数据分析项目设计》 36《数学建模(1)》 37《数学建模(2)》 38《中文文本数据挖掘项目实训》 39《综合项目实训》教学大纲 40《毕业设计(论文)》教学大纲 41《毕业实习》教学大纲
文档格式:PPT 文档大小:4.38MB 文档页数:160
第一节 中值定理 一、罗尔中值定理 二、拉格朗日中值定理 三、柯西中值定理 第二节 洛必达法则 第三节 泰勒(Taylor)定理 一、问题的提出 二、Pn和Rn的确定 三、泰勒中值定理 四、简单应用 第四节 函数单调性的判定法 一、单调性的判别法 二、单调区间求法 第五节 函数极值及其求法 一、函数极值的定义 二、函数极值的求法 第六节 最大值、最小值问题 一、最值的求法 二、应用举例 第七节 曲线的凹凸与拐点 一、曲线凹凸的定义 二、曲线凹凸的判定 三、曲线的拐点及其求法 第九节 曲率 一、弧微分 二、曲率及其计算公式 三、曲率圆与曲率半径
文档格式:PDF 文档大小:27.64MB 文档页数:353
第一节映射与函数 (Mapping and Function) 一问题的提出 二 函数基本概念 三 函数的几种特性 四五 复合函数、反函数 小结与思考判断题 第二节数列的极限 一、概念的引入 二、数列的定义 三、数列的极限 四、数列极限的性质 五、小结 第三节 函数的极限 一、函数极限定义 二、函数极限的性质 三、小结思考判断题 第四节 无穷小与无穷大 一、无穷小 二、无穷大 三、无穷小与无穷大的关系 四、小结思考题 第五节 极限运算法则 一、无穷小的运算性质 二、极限四则运算法则 三、求极限方法举例 四、复合函数的极限运算法则 五、小结思考题 第六节极限存在准则两个重要极限 一 极限存在的准则I 重要极限I 二极限存在的准则Ⅱ 重要极限Ⅱ 三小结与思考判断题 第七节无穷小的比较 问题的提出 二无穷小的比较 三等价无穷小替换 四小结与思考判断题 第八节函数的连续性与间断点 一、函数的连续性 二、函数的间断点 三、小结思考题 第九节连续函数的运算与 初等函数的连续性 连续函数的和、差、积、商的 连续性 反函数与复合函数的连续性 四小结与思考判断题 第十节 闭区间上连续函数的性质 有界性与最大值最小值定理 零点定理与介值定理 三小结思考判断题
文档格式:PPT 文档大小:4.37MB 文档页数:230
第一节 微分方程的基本概念 一、问题的提出 二、微分方程的定义 三、主要问题-----求方程的解 第二节 可分离变量的微分方程 第三节 齐次方程 一、齐次方程 二、可化为齐次的方程 第四节 一阶线性微分方程 一、线性方程 二、伯努利方程 第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结 第六节 欧拉-柯西近似法 一、方向场 积分曲线 二、欧拉-柯西近似法 第七节 可降阶的高阶微分方程 一、 型 二、 型 三、恰当导数方程 四、齐次方程 第八节 高阶线性微分方程 一、概念的引入 二、线性微分方程的解的结构 三、降阶法与常数变易法 第九节 二阶常系数齐次线性微分方程 一、定义 二、二阶常系数齐次线性方程解法 三、n阶常系数齐次线性方程解法 第十节 二阶常系数非齐次线性微分方程 第十一节 欧拉方程 第十二节 微分方程的幂级数解法 一、问题的提出 二、 特解求法 三、二阶齐次线性方程幂级数求法 第十三节 常系数线性微分方程组解法举例 一、微分方程组 二、常系数线性微分方程组的解法 三、小结
文档格式:PDF 文档大小:1.37MB 文档页数:308
全书共六章,可大致分为三个部分:第一部分,包括引言和第一章基本概念,它是全书的基础,在以后各章都要用到,应予以充分重视;第二部分,包括第二、三两章,介绍含一个代数运算的群的理论.其中第二章介绍群的最基本的知识;第三章则进一步介绍正规子群和群的同态与同构,以及和它们相关联的群论中最基本最重要的定理,如群的同态和同构定理,共轭、正规化子和中心化子,Sylow定理和有限交换群基本定理等等;第三部分,包括第四、五、六三章,介绍含有两个代数运算的环与域的理论.其中第四章介绍环的基本知识;第五章介绍环论中一个特殊问题———惟一分解整环内的因子分解理论,并由此介绍了两种特殊的环类,即主理想整环和欧氏环;第六章介绍域,一种加强条件的环,并且主要介绍代数扩域,特别是有限次扩域和有限域
文档格式:PDF 文档大小:1.28MB 文档页数:218
第一节 映射与函数 一、集合 二、映射 三、函数 第二节 数列的极限 一、概念的引入 二、数列的定义 三、数列的极限 四、数列极限的性质 五、小结 第三节 函数的极限 一、自变量趋于有限值时函数的极限 二、自变量趋于有无穷大时函数的极限 三、函数极限的性质 第四节 无穷小与无穷大 一、无穷小 二、无穷大 三、无穷小与无穷大的关系 第五节 极限运算法则 一、无穷小的运算性质 二、极限运算法则 三、求极限方法举例 第六节 极限存在准则 两个重要极限 一、极限存在准则 二、两个重要极限 第七节 无穷小的比较 一、无穷小的比较 二、等价无穷小替换 第八节 函数的连续性与间断点 第九节 连续函数的运算与初等函数的连续性 一、连续函数的和、积及商的连续性 二、反函数与复合函数的连续性 三、初等函数的连续性 第十节 闭区间上连续函数的性质 一、最大值、最小值定理 二、介值定理
文档格式:PPT 文档大小:3.93MB 文档页数:208
第一节 对弧长的曲线积分 一、问题的提出 二、对弧长的曲线积分的概念 三、对弧长曲线积分的计算 四、几何与物理意义 第二节 对坐标的曲线积分 一、问题的提出 二、对坐标的曲线积分的概念 三、对坐标的曲线积分的计算 第三节 格林公式及其应用 一、区域连通性的分类 二、格林公式 三、简单应用 第四节 对面积的曲面积分 一、概念的引入 二、对面积的曲面积分的定义 三、计算法 第五节 对坐标的曲面积分 一、基本概念 二、概念的引入 三、概念及性质 四、计算法 五、两类曲面积分之间的联系 第六节 高斯公式 通量与散度 一、高斯公式 二、简单的应用 三、物理意义——通量与散度 第七节 斯托克斯公式环流量与旋度 一、斯托克斯(stokes)公式 二、简单的应用 三、物理意义---环流量与旋度
文档格式:PPT 文档大小:4.69MB 文档页数:215
第一节 空间直角坐标系 一、空间点的直角坐标 二、空间两点间的距离 第二节 向量及其加减法向量与数的乘法 一、向量的概念 二、向量的加减法 三、向量与数的乘法 第三节 向量的坐标 一、向量在轴上的投影与投影定理 二、向量在坐标轴上的分向量与向量的坐标 三、向量的模与方向余弦的坐标表示式 第四节 数量积 向量积、混合积 一、两向量的数量积 二、两向量的向量积 三、向量的混合积 第五节 曲面及其方程 一、曲面方程的概念 二、旋转曲面 三、柱面 第六节 空间曲线及其方程 一、空间曲线的一般方程 二、空间曲线的参数方程 三、空间曲线在坐标面上的投影 第七节 平面及其方程 一、平面的点法式方程 二、平面的一般方程 三、两平面的夹角 第八节 空间直线及其方程 一、空间直线的一般方程 二、空间直线的对称式方程与参数方程 三、两直线的夹角 四、直线与平面的夹角 第九节 二次曲面 一、基本内容 (一)椭球面 (二)抛物面 (三)双曲面 二、小结
文档格式:PPT 文档大小:4.89MB 文档页数:300
第一节 常数项级数的概念 一、问题的提出 二、级数的概念 三、基本性质 四、收敛的必要条件 第二节 常数项级数的审敛法 一、正项级数及其审敛法 二、交错级数及其审敛法 三、绝对收敛与条件收敛 第三节 幂级数 一、函数项级数的一般概念 二、幂级数及其收敛性 三、幂级数的运算 第四节 函数展开成幂级数 一、泰勒级数 二、函数展开成幂级数 第五节 函数的幂级数展开式的应用 一、近似计算 二、计算定积分 三、求数项级数的和 四、欧拉公式 第六节 函数项级数的一致收敛性、一致收敛级数的基本性质 第七节 傅里叶级数 一、问题的提出 二、三角级数 三角函数的正交性 三、函数展开成傅里叶级数 第八节 正弦级数与余弦级数 一、奇函数和偶函数的傅里叶级数 二、函数展开成正弦级数或余弦级数 第九节 周期为2L的周期函数傅里叶级数 一、以2L为周期的傅氏级数 二、典型例题 第十节 傅里叶级数的复数形式
首页上页123124125126127128129130下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1372 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有