点击切换搜索课件文库搜索结果(184)
文档格式:PPT 文档大小:569.5KB 文档页数:30
重积分的应用 把定积分的元素法推广到二重积分的应用中 若要计算的某个量U对于闭区域D具有可加性 (即当闭区域D分成许多小闭区域时,所求量U相应 地分成许多部分量,且U等于部分量之和),并且 在闭区域D内任取一个直径很小的闭区域do时, 相应地部分量可近似地表示为f(x,y)do的形式, 其中(x,y)在do内.这个f(x,y)do称为所求量U 的元素,记为dU,所求量的积分表达式为
文档格式:PPT 文档大小:631KB 文档页数:32
Gauss公式 一、 Gauss公式 前面我们将 Newton-Lebniz-公式推广到了平面 区域的情况,得到了 Green公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green公式做进一步推广,这 就是下面将要介绍的 Gauss公式, Gauss公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时 Gauss公式也是计算曲面积分的一 有效方法
文档格式:PDF 文档大小:205.63KB 文档页数:14
现在将微分运算d 推广到Λk 上去。对 k Λ 中的任意一个 k-形式
文档格式:PPT 文档大小:569.5KB 文档页数:30
重积分的应用 把定积分的元素法推广到二重积分的应用中 若要计算的某个量U对于闭区域D具有可加性 (即当闭区域D分成许多小闭区域时,所求量U相应 地分成许多部分量,且U等于部分量之和),并且 在闭区域D内任取一个直径很小的闭区域do时, 相应地部分量可近似地表示为f(x,y)do的形式, 其中(x,y)在do内.这个f(x,y)do称为所求量U 的元素,记为dU,所求量的积分表达式为
文档格式:PPT 文档大小:747.5KB 文档页数:29
在一元函数积分学中,我们已经知道,定积 分是定义在某一区间上的一元函数的某种特定形 式的和式的极限,由于科学技术和生产实践的发 展,需要计算空间形体的体积、曲面的面积、空 间物体的质量、重心、转动惯量等,定积分已经 不能解决这类问题,另一方面,从数学逻辑思维 的规律出发,必然会考虑定积分概念的推广,从 而提出了多元函数的积分学问题
文档格式:PPT 文档大小:83.5KB 文档页数:7
学习目标:能够运用定积分解决物理问题 学习要点:引力,变力沿直线所做的功 学习基础:微元法,分部积分法,换元法 定积分在物理中有广泛的应用,本节主要利用上一节所介 绍的“微元法”把物理学上的一些问题转化为计算定积分的问题。 这里介绍几个有代表性的例子
文档格式:PPT 文档大小:747.5KB 文档页数:29
二重积分的概念和性质 在一元函数积分学中,我们已经知道,定积 分是定义在某一区间上的一元函数的某种特定形 式的和式的极限,由于科学技术和生产实践的发 展,需要计算空间形体的体积、曲面的面积、空 间物体的质量、重心、转动惯量等,定积分已经 不能解决这类问题,另一方面,从数学逻辑思维 的规律出发,必然会考虑定积分概念的推广,从 而提出了多元函数的积分学问题
文档格式:PPT 文档大小:463.5KB 文档页数:31
 §3.1 复变函数积分的概念  §3.2 柯西-古萨基本定理  §3.3 基本定理的推广
文档格式:PPT 文档大小:1.47MB 文档页数:17
一、问题的提出 二、复合闭路定理 三、典型例题 四、小结与思考
文档格式:PPT 文档大小:227.5KB 文档页数:16
用残数计算实积分 1计算
首页上页1011121314151617下页末页
热门关键字
搜索一下,找到相关课件或文库资源 184 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有