点击切换搜索课件文库搜索结果(219)
文档格式:PPT 文档大小:189KB 文档页数:6
由第一章知:显函数y=f(x),也可写成F(x,y =y-f(x)=0.由方程F(x,y)=0确定的隐函数可能 有两种情形:y是x的函数y=f(x)或x是y的函 数x=(y);但并非所有隐函数都可化为一个显函 数.如y-esy+x2y2=0. 因而有必要研究隐函数的求导方法,下面通过几个例 子来介绍
文档格式:PPT 文档大小:352.5KB 文档页数:6
类似于一元函数的广义积分对于二元函数也有两 类广义二重积分.即可分为积分区域无限与被积函数无 界两种下面只研究无界区域上的二重积分的计算方法 定义3设D是xoy面上的无界区域,f(x2y)在D上连续且G 是D上的任意一个闭区域上若G以任何方式无限扩展且 趋于D时,均有limf(x,y)dxdy=1
文档格式:PPT 文档大小:752KB 文档页数:18
4.2罗必达(L'Hospital)法则 在第二章中我们已经知道,0型的极限可能存在,也可能不存在。 例:求1.lim=1→则原式极限存在
文档格式:PPT 文档大小:428KB 文档页数:17
问题:根据极限的定义,只能验证某个常数A 是否为某个函数f(x的极限,而不能求出函数f(x的 极限.为了解决极限的计算问题,下面介绍极限的运 算法则;并利用这些法则和§2.1及2.2中的某些结 论来求函数极限
文档格式:PPT 文档大小:219.5KB 文档页数:8
问题:由导数定义求函数导数,繁!下面推出导数的运算法则,利用简单函数的导数便可求出任何初等函数在其定义域内的导数
文档格式:PPT 文档大小:804.5KB 文档页数:18
前几章讨论的函数y=f(x),是因变量与一个自变量 之间的关系,在此关系中,因变量的值只依赖于一个自 变量,称这类函数为一元函数.但在许多实际问题中往 往需要研究因变量与几个自变量之间的关系,这时因 变量的值依赖于几个自变量
文档格式:PPT 文档大小:242.5KB 文档页数:7
利用函数的性态如函数的单调性、极值、凹性、 拐点、渐近线及基本性质如周期性、对称性等;再 利用描点(特殊选点)作图,就可比较准确地作出函数图形.描绘函数图形的一般步骤是: (1)确定函数y=f(x)的定义域,讨论其周期性和对称性; (2)确定曲线的渐近线;
文档格式:PPT 文档大小:352.5KB 文档页数:6
类似于一元函数的广义积分对于二元函数也有两 类广义二重积分.即可分为积分区域无限与被积函数无 界两种下面只研究无界区域上的二重积分的计算方法 定义3设D是xoy面上的无界区域,f(x2y)在D上连续且G 是D上的任意一个闭区域上若G以任何方式无限扩展且 趋于D时
文档格式:PPT 文档大小:242.5KB 文档页数:7
利用函数的性态如函数的单调性、极值、凹性、 拐点、渐近线及基本性质如周期性、对称性等;再 利用描点(特殊选点)作图,就可比较准确地作出函数图 形.描绘函数图形的一般步骤是: (1)确定函数y=f(x)的定义域,讨论其周期性和对称性; (2)确定曲线的渐近线;
文档格式:PPT 文档大小:752KB 文档页数:18
在第二章中我们已经知道,\0”型的极限可能 存在,也可能不存在 sInd 例:求1.lim 则原式极限存在 x→>0x 2:imx-2x+1=→则原式极限不存在 +1 通常称不能直接使用极限的四则运算法则来计算 的极限,为未定式的极限 下面利用柯西中值定理来推出一种求未定式极限 的简便而有效的法则一罗必达法则
首页上页1415161718192021下页末页
热门关键字
搜索一下,找到相关课件或文库资源 219 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有