点击切换搜索课件文库搜索结果(399)
文档格式:PPT 文档大小:499.5KB 文档页数:14
由6.1知定积分是一个复杂和式的极限,但要想通过 求积分和的极限来得到定积分的值,却非常困难;下面 寻求一种计算定积分的非常简便的新方法——牛顿莱布 尼兹(Netwon-Laibniz-)公式计算法. 一.积分上限函数
文档格式:DOC 文档大小:475.5KB 文档页数:11
第五章向量分析 5-7微分形式介绍 第二十二讲微形形式介绍 课后作业: 阅读:第十三章13.7pp.278-290 预习:第十四章14-1pp.293304 作业题:p.290补充题1:4:58 5-7微分形式介绍 (一)微分形式问题的提出 我们已经学习过四个微积分的重要公式 Newton-Leibniz-公式∫df=f(b)-f(a) Green公式x+y
文档格式:PPT 文档大小:506.5KB 文档页数:41
我们这门课程叫高等数学,它的内容包括一元 和多元微积分学,无穷级数论和作为理论基础的 极限理论,以及作为一元微积分学的简单应用— —常微分方程。由于构成它的主体是一元函数微 积分学,所以有时又称为微积分。 17世纪(1763年)Descartes建立了解析几何,同 时把变量引入数学,对数学的发展产生了巨大的影 响,使数学从研究常量的初等数学进一步发展到研 究变量的高等数学。微积分是高等数学的一个重要 的组成部分,是研究变量间的依赖关系——函数的 一门学科,是学习其它自然科学的基础
文档格式:PPT 文档大小:508.5KB 文档页数:41
我们这门课程叫高等数学,它的内容包括一元 和多元微积分学,无穷级数论和作为理论基础的 极限理论,以及作为一元微积分学的简单应用 常微分方程。由于构成它的主体是一元函数微 积分学,所以有时又称为微积分。 17世纪(1763年) Descartes建立了解析几何,同 时把变量引入数学,对数学的发展产生了巨大的影 响,使数学从研究常量的初等数学进一步发展到研 究变量的高等数学。微积分是高等数学的一个重要 的组成部分,是研究变量间的依赖关系函数的 一门学科,是学习其它自然科学的基础
文档格式:PPT 文档大小:498KB 文档页数:33
从18世纪以来,无穷级数就被认为是微积分的 一个不可缺少的部分,是高等数学的重要内容,同 时也是有力的数学工具,在表示函数、研究函数性 质等方面有巨大作用,在自然科学和工程技术领域 有着广泛的应用 本章主要内容包括常数项级数和两类重要的函 数项级数——幂级数和三角级数,主要围绕三个问 题展开讨论:①级数的收敛性判定问题,②把已知 函数表示成级数问题,③级数求和问题
文档格式:PPT 文档大小:588KB 文档页数:36
第四节二阶常系数线性微分方程 一、高阶线性微分方程的一般理论 二、二阶常系数齐线性微分方程的解 三、二阶常系数非齐线性微分方程的解
文档格式:PPT 文档大小:591KB 文档页数:30
第四章一元函数的导数与微分 本章学习要求: 1.理解导数和微分的概念。熟悉导数的几何意义以及函数的可导、可微、连续之间的关系。 2.熟悉一阶微分形式不变性。 3.熟悉导数和微分的运算法则,能熟练运用求导的基本公式、复合函数求导法、隐函数求导法、反函数求导法、参数方程求导法、取对数求导法等方法求出函数的一、二阶导数和微分
文档格式:PDF 文档大小:196.04KB 文档页数:7
1.设x)在(-∞,+∞)内可导,且对任意x1,x2,x1>x2时,都有fx1)>fx2),则 (a)对任意x,f(x)>0(b)对任意xf\(x)≤0 (c)函数f(一x)单调增加 (d)函数f(一x)单调增加
文档格式:PDF 文档大小:258.83KB 文档页数:16
产生导数的实际背景 微积分的发明人之一──Newton最早用导数研究的是如何确定 力学中运动物体的瞬时速度问题。 一个运动物体在时刻t 的位移可以用函数s st = ( )来描述,它在时 间段[, ] tt t + Δ 中位移的改变量为Δs s t t st = ( ) () + Δ − ,所以当Δt 很小的时 候,它在时刻t的瞬时速度可以近似地用它在[, ] tt t + Δ 中的平均速度 v t
文档格式:PPT 文档大小:564.5KB 文档页数:16
产生导数的实际背景 微积分的发明人之一──Newton最早用导数研究的是如何确定 力学中运动物体的瞬时速度问题。 一个运动物体在时刻t 的位移可以用函数s = s(t)来描述,它在时 间段[t, t + t]中位移的改变量为s = s( t + t) − s(t),所以当t 很小的时 候,它在时刻t的瞬时速度可以近似地用它在[t, t + t]中的平均速度
首页上页1617181920212223下页末页
热门关键字
搜索一下,找到相关课件或文库资源 399 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有