点击切换搜索课件文库搜索结果(105)
文档格式:PDF 文档大小:174.4KB 文档页数:9
在给定了一个测度空间以后,由定义在这个空间上的一个函数可以自然地产生出各 种各样的集.为用测度论的方法研究这个函数我们自然要求这些集是可测的.由此产生 了可测函数的概念在定义积分时候,对被积函数的一个基本要求就是这个函数必须是可 测的我们将看到可测函数是一类很广泛的函数.特别地,欧氏空间R上的 Lebesgue可 测函数是比连续函数更广泛的一类函数.而且可测函数类对极限运算是封闭的,这将使我 们在讨论积分的时候更加便利
文档格式:PDF 文档大小:5.14MB 文档页数:222
第一章 集类与测度 第二章 可测映射 第三章 积分 第四章 乘积可测空间上的测度与积分 第五章 Hausdorff空间上的测度与积分 第六章 测度的收敛 第七章 概率论基础选讲
文档格式:PDF 文档大小:204.16KB 文档页数:9
在给定了一个测度空间以后,由定义在这个空间上的一个函数可以自然地产生出各种 各样的集.为用测度论的方法研究这个函数我们自然要求这些集是可测的.由此产生了可 测函数的概念在定义积分时候,对被积函数的一个基本要求就是这个函数必须是可测的我 们将看到可测函数是一类很广泛的函数.特别地,欧氏空间R上的 Lebesgue可测函数是比 连续函数更广泛的一类函数.而且可测函数类对极限运算是封闭的,这将使我们在讨论积 分的时候更加便利
文档格式:PDF 文档大小:186.1KB 文档页数:6
集类设X为一固定的非空集.以X的一些子集为元素的集称为X上的集类.集类一般 用花体字母如A,B,C等表示.例如,由直线R上开区间的全体所成的集就是R上的一 个集类.本节若无特别申明,均设所考虑的集类都是X上的集类 在测度论中经常要用到具有某些运算封闭性的集类对集类要求不同的运算封闭性就 得到不同的集类本节介绍常见的几种集类
文档格式:DOC 文档大小:19KB 文档页数:1
柯尔莫哥洛夫,AH(1930~1987) 苏联科学家,1903年4月生于俄国顿巴夫,1987年10月卒 于 苏联莫斯科.1920年入莫斯科大学学习,1931年任莫斯科大 学教授后任该校数学所所长,1939年任苏联科学院院士,他 对开创现代数学的一系列重要分支做出了重大贡献. 柯尔莫哥洛夫建立了在测度论基础上的概率论公理系统,奠 定了近代概率论的基础,他也是随机过程论的奠基人之一 1980年由于他在调和分析、概率论、遍历理论等方面的出 色 工作获沃尔夫奖
文档格式:PDF 文档大小:220.19KB 文档页数:10
教学目的 本节利用§2.2 中一般测度的构造方法, 构造一个重要的测度, 即欧氏空间 n R 上的 Lebesgue 测度. Lebesgue 测度的建立, 为定义 Lebesgue 积 分打下基础. 本节要点 利用§2.2 一般测度的构造方法,可以较快的构造出 Lebesgue 测 度. Lebesgue 测度不仅具有抽象测度具有的基本性质, 而且还具有一些特有的 性质,如利用开集或闭集的逼近性质等. Lebesgue 可测集包含了常见的一些集
文档格式:PDF 文档大小:191.35KB 文档页数:12
教学目的本节讨论如何将环上的测度延拓到生成的代数上去.这是定义测度常用的方法.下一节将用这个方法定义重要的 Lebesgue测度。本节要点本节所述测度的延拓过程思路较复杂,论证较繁难应注意讲 清主要思路,定理的证明应注意交代主要思想
文档格式:PDF 文档大小:220.19KB 文档页数:10
本节利用2.2中一般测度的构造方法,构造一个重要的测度, 即欧氏空间R上的Lebesgue测度 Lebesgue测度的建立,为定义 Lebesgue积 分打下基础
文档格式:PDF 文档大小:208.64KB 文档页数:10
教学目的 本节讨论如何将环 R 上的测度延拓到 R 生成的σ -代数上 去. 这是定义测度常用的方法. 下一节将用这个方法定义重要的 Lebesgue 测 度. 本节要点 本节所述测度的延拓过程思路较复杂, 论证较繁难. 应注意 讲清主要思路, 定理的证明应注意交代主要思想
文档格式:PDF 文档大小:208.64KB 文档页数:10
一般说来,要在一个比较复杂的集类上定义一个满足某些特定条件的测度,往往并非 易事.设R是一个环,(R)是由R生成的-代数一般情况下,o()要比大得多 显然,在R上定义一个测度要比直接在(R定义容易.因此,如果我们要在o()定义 一个满足某些特定条件的测度,我们可以先
上页12345678下页末页
热门关键字
搜索一下,找到相关课件或文库资源 105 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有