点击切换搜索课件文库搜索结果(594)
文档格式:DOC 文档大小:197.5KB 文档页数:2
4.4.2关于特征向量与特征子空间的一些性质 命题线性变换的属于不同特征值的特征向量线性无关。 证明设A为VK上的线性变换,,2,是两两不同的特征值,(1≤i≤t)是 属于特征子空间V的特征向量,设k,k2,k,∈K,使得k5+k252+…+k5=0,两 边用A作用(i=1,2,…,-1),于是得到方程组
文档格式:DOC 文档大小:254.5KB 文档页数:3
5.1.1线性空间上的线性函数的定义 1、线性函数的定义 定义设V为数域K上的线性空间,fV→K为映射,满足f(a+B)=f(a)+f(),va,B∈V;f(ka)kf(a),∈k,aev,则称f为由V到K的一个线性函数(即f为V到K的一个线性映射)如同一般的线性映射,有以下事实:
文档格式:DOC 文档大小:226KB 文档页数:3
4.3.2线性映射的运算的定义与性质 定义线性映射的运算(加法与数域K上的数量乘法) 设f:U→V,g:U→V为线性映射,定义f+g为 f+g:U→V, af(a)+g(a)(a∈U) 定义kf(Vk∈K)为 kf:u→v akf(a)(a∈U) 说明f+g与kf仍为线性映射。 命题Hom(U,V)在加法和数乘下构成数域K上的线性空间。 证明逐项验证
文档格式:DOC 文档大小:113KB 文档页数:4
线性空间是一个重要的代数结构,线性代数主要是研究有限维线性空间和线性映射的基本性质
文档格式:DOC 文档大小:84.5KB 文档页数:2
一、线性子空间的概念 定义 7 数域 P 上的线性空间 V 的一个非空子集合 W 称为 V 的一个线性子空 间(或简称子空间),如果 W 对于 V 的两种运算也构成数域 P 上的线性空间
文档格式:PPT 文档大小:274.5KB 文档页数:10
一、线性空间的定义 二、线性空间的简单性质
文档格式:DOC 文档大小:188.5KB 文档页数:4
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.1 线性空间的基本概念 4.1.4 线性空间的基变换,基的过渡矩阵 4.2子空间与商空间 4.2.1 线性空间的子空间的定义
文档格式:DOC 文档大小:143.5KB 文档页数:2
4.3.4线性变换的定义与运算 定义线性空间到自身的线性映射称为线性变换,记Hom(V,V)为Endr(V)或End (V)。 例恒同变换
文档格式:DOC 文档大小:77.5KB 文档页数:1
第四章4-4线性变换的特征值与特征向量 4.4.1线性变换的特征值与特征向量的定义 定义若存在非零向量ξ∈V,使得对于某个∈K,有A5=5,则称ξ是A的属 于特征值λ的特征向量。 命题线性空间V中属于确定的特征值λ的特征向量(添加上零向量)构成子空间。 证明设51,52是属于的特征向量,Vk,∈K,则 A(k5+2)=k()+a(2)=k+2=(k5+152), 证毕。 定义线性空间V中属于确定的特征值λ的特征向量(添加上零向量)构成子空间称 为属于特征值的特征子空间,记为V 4.4.2特征值和特征子空间的计算、特征多项式
文档格式:DOC 文档大小:188.5KB 文档页数:4
4.1.4线性空间的基变换,基的过渡矩阵 设VK是n维线性空间,设1,E2,…n和2,…,n是两组基,且 (=+++, n2=121+22+…+n2n (nn =tne1 +tn2++ 将其写成矩阵形式 112…ㄣn t21 (n2,n)=(1,2n2122n, :: nn2…tm 定义.11我们称矩阵 (2…n t2122…t2 T=:: Imt In2 为从2n到2的过渡矩阵
上页12345678下页末页
热门关键字
搜索一下,找到相关课件或文库资源 594 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有