点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:361KB 文档页数:25
一、Riemann积分对定义域作分划 若f(x) Riemann可积,则f(x)在[a,b]上 Lebesgue可积,且积分值相等。 f(x) Riemann可积当且仅当f(x)的不连续点全体为零测度集
文档格式:PPT 文档大小:334KB 文档页数:10
微分的定义 设 y = f (x)是一个给定的函数, 在点x 附近有定义。若 f (x)在x 处的 自变量产生了某个增量x 变成了 x + x (增量x 可正可负,但不为 零),那么它的函数值也相应地产 生了一个增量 y(x) = f (x + x) − f (x), 在不会发生混淆的场合,或者是无需特别指明自变量的时候
文档格式:PDF 文档大小:170.48KB 文档页数:5
Guessing a particular solution. Recall that a general linear recurrence has the form: f(n)=a1f(n-1)+a2f(n-2)+…+aaf(n-d)+g(n) As explained in lecture, one step in solving this recurrence is finding a particular solu- tion; i.e., a function f(n)that satisfies the recurrence, but may not be consistent with the boundary conditions. Here's a recipe to help you guess a particular solution:
文档格式:PPT 文档大小:535.5KB 文档页数:15
含参变量常义积分的定义 设f(x,y)是定义在闭矩形[a,b]x[c,d]上的连续函数,对于任意固 定的y∈[c,d],f(x,y)是[a,b]上关于x的一元连续函数,因此它在[a,b 上的积分存在,且积分值∫f(xy)dx由y唯一确定。也就是说, I(y)= f(x, y)dx,[c,d] 确定了一个关于y的一元函数
文档格式:PDF 文档大小:62.23KB 文档页数:3
then there exists AE R\ such that (Kuhn-Tucker condition) G(s') =0 and 1. Lagrange Method for Constrained Optimization FOC: D.L(,\)=0. The following classical theorem is from Takayama(1993, p.114). Theorem A-4 (Sufficieney). Let f and, i= ,..m, be quasi-concave, where Theorem A-1. (Lagrange). For f: and G\\, consider the following G=(.8 ) Let r' satisfy the Kuhn-Tucker condition and the FOC for (A.2). Then, x' problem is a global maximum point if max f() (1)Df(x') =0, and f is locally twice continuously differentiable,or
文档格式:PPT 文档大小:167KB 文档页数:11
③be=f(e,m)=f(F22) 使用条件F(负荷),以及发动机的性能, 如燃油喷射、压缩比,工况等 ③mr传动系的结构型式、技术状况、使用条件
文档格式:DOC 文档大小:205KB 文档页数:3
.下列函数的极大值点和极小值点: (1)f(x,y) (2)f(x,y)=3axy-x3-y2(a>0) (3)f(x,y) (a,b>0) (4)f(x,y)=e2(x+y2+2y)
文档格式:DOC 文档大小:263KB 文档页数:4
一、极值 定义1设f(x,y)在Mo(x,y)的邻域内成立不等式 f(x,y)≤f(x,yo) 则称函数f(x,y)在点M取到极大值,点M(x,y)为函数的极大点,若在M(x,y)的邻域内成立 不等式
文档格式:DOC 文档大小:733.5KB 文档页数:10
一、偏导数的定义 1.偏导数定义 定义1设f(x,y)是一个二元函数,定义在R2内某一个开集D内,点(x,yo)∈D,在f(x,y)中 固定y=yo,那么f(x,yo)是一个变元x的函数,如果f(xy)在点x可导,即如果
文档格式:DOC 文档大小:293KB 文档页数:5
一、富里埃(Fourier)级数的引进 1定义:设f(x)是(-∞,+∞)上以2元为周期的函数,且f(x)在[-,]上绝对可积,称形如 a+∑( cos nx+ sin nx) 2n=1 的函数项级数为f(x)的 Fourier级数(f(x)的 Fourier展开式)
首页上页1819202122232425下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有