点击切换搜索课件文库搜索结果(478)
文档格式:PDF 文档大小:1.86MB 文档页数:6
传统人群搜索(SOA)算法通过计算搜索方向、搜索步长和搜寻更新个体位置三个步骤进行寻优.它的缺点在于计算量大,种群之间信息交流少,导致寻优速度慢.针对人群搜索算法存在的缺点,本文提出二项交叉算子改进人群搜索算法(BCOISOA)对其改进.在计算搜索步长方面,本文采用随机数与最大函数值位置乘积判断子群位置,进而提高全局寻优计算速率.在更新位置方面,本文提出二项交叉算子加强种群之间的联系,避免在更新搜索方向过程中,算法因局部最优而导致过早收敛,进而达到快速、准确寻找最优解的目的.本文将以上二项交叉算子改进人群搜索-BP神经网络算法应用在二段式磨矿过程中,实现磨矿粒度在线软测量.仿真结果表明,与人群搜索算法和粒子群算法进行比较,二项交叉算子改进人群搜索算法收敛速度更快,预测精度最高,满足对磨矿粒度实时检测的要求
文档格式:PDF 文档大小:648.63KB 文档页数:9
为解决进行PM2.5质量浓度预测中多因素回归模型的不稳定、神经网络模型的过拟合及局部最小等问题,提出应用支持向量机和模糊粒化时间序列相结合的方法,对PM2.5质量浓度未来变化趋势和范围进行预测.根据PM2.5不同季节的日变化周期模式,确定以24 h为周期的粒化窗宽,利用三角型隶属函数对数据样本进行特征提取作为支持向量机的输入,并在k重交叉验证法下采用网格划分寻找出模型的最佳参数.以2013年3月—2014年2月北京市海淀区万柳监测点四个季节PM2.5的1 h质量浓度监测值为样本数据,应用该方法建立PM2.5质量浓度的时间序列预测模型,并在MATLAB平台下应用LIBSVM工具实现计算过程.结果表明,基于模糊粒化时间序列的预测模型,能较好解决PM2.5机理性建模方式下由于影响因素考虑不全而造成的预测结果不稳定,对模糊粒子拟合效果较好
文档格式:PDF 文档大小:1.28MB 文档页数:11
《工程科学学报》:一种基于卷积神经网络的CSI指纹室内定位方法
文档格式:PDF 文档大小:423.9KB 文档页数:6
表面张力是矿物棉生产的重要参数,直接影响到配料和工艺参数的选择.通过实验测量并建立模型预报系统研究了以高炉渣为主要原料制备矿物棉时熔体的表面张力.首先测量了SiO2(40%-60%)-Al2O3(5%-20%)-CaO(20%-30%)-MgO(5%)四元系的表面张力,其值处于350-500 m·m-1之间;然后结合文献报道的表面张力数据,利用人工神经网络技术建立了SiO2(35%-60%)-Al2O3(5%-20%)-CaO(20%-45%)-MgO(0-10%)四元渣系的表面张力预报模型.该模型对成分范围内的表面张力预报平均误差为9.32%,预报精度较高,可以预报矿物棉熔体成分范围内的表面张力
文档格式:PDF 文档大小:548.5KB 文档页数:6
系统研究了面向复杂系统监测时变信号的实时故障检测与识别问题.采用滑窗Mallat小波快速变换克服传统小波变换的时域全局依耐性并提高计算效率,使之适应于实时故障检测;针对时变信号的故障模式识别难题,在故障检测基础上采用改进动态循环神经网络(improved dynamic recurrent neural network,IDRNN)进行智能故障识别.最后将滑动时窗小波检测模块及最优IDRNN网络模块嵌入某型完整卫星姿态控制系统仿真平台进行在线故障诊断.试验结果表明:实时条件下的滑动窗口小波变换与传统小波变换具有一致性,IDRNN对于时变信号识别具有较好的时域泛化能力,将滑窗移动时不变小波方法与IDRNN结合可以实现面向复杂系统监测实时信号的故障检测及复合模式分类
文档格式:PDF 文档大小:1.43MB 文档页数:9
高质量睡眠与儿童的身体发育、认知功能、学习和注意力密切相关,由于儿童睡眠障碍的早期症状不明显,需要进行长期监测,因此急需找到一种适用于儿童睡眠监测,且能够提前预防和诊断此类疾病的方法。多导睡眠图(Polysomnography,PSG)是临床指南推荐的睡眠障碍基本检测方法,通过观察PSG各睡眠期间的变化和规律,对睡眠质量评估和睡眠障碍识别具有基础作用。本文对儿童睡眠分期进行了研究,利用多导睡眠图记录的单通道脑电信号,在Alexnet的基础上,用一维卷积代替二维卷积,提出一种1D-CNN结构,由5个卷积层、3个池化层和3个全连接层组成,并在1D-CNN中添加了批量归一化层(Batch normalization layer),保持卷积核的大小保持不变。针对数据集少的情况,采用了重叠的方法对数据集进行了扩充。实验结果表明,该模型儿童睡眠分期的准确率为84.3%。通过北京市儿童医院的PSG数据获得的归一化混淆矩阵,可以看出,Wake、N2、N3和REM期睡眠的分类性能很好。对于N1期睡眠,存在将N1期睡眠被误分类为Wake、N2和REM期睡眠的情况,因此以后的工作应重点提升N1期睡眠的准确性。总体而言,对于基于带有睡眠阶段标记的单通道EEG的自动睡眠分期,本文提出的1D-CNN模型可以实现针对于儿童的自动睡眠分期。在未来的工作中,仍需要研究开发更适合于儿童的睡眠分期策略,在更大数据量的基础上进行实验
文档格式:PDF 文档大小:697.17KB 文档页数:9
利用三元乙丙橡胶(EPDM)在我国11个典型大气站点暴晒3年的老化数据及气候环境数据,基于对EPDM老化行为分析以及气候环境对EPDM作用机制,探究EPDM老化与气候因子之间的关联性.通过因子分析与逼近理想解排序法,将多个老化指标转化为综合老化值;由灰色关联度分析,得到影响EPDM老化的关键气候因子为辐照度、湿度、温度和降雨;通过BP人工神经网络,建立EPDM综合老化值与气候因子间关联模型.利用我国97个地市级城市气象数据,预测EPDM在未试验地区综合老化值,可视化得到EPDM在我国的老化分布图.图形表明,EPDM在我国西部地区,新疆南部、云南南端、广东南部、海南、台湾等地区老化程度较严重
文档格式:PDF 文档大小:941.05KB 文档页数:8
脏腑定位,即明确病变所在的脏腑,是中医脏腑辨证的重要阶段。本文旨在通过神经网络模型搭建中医脏腑定位模型,输入症状文本信息,输出对应的病变脏腑标签,为实现中医辅助诊疗的脏腑辨证提供支持。将中医的脏腑定位问题建模为自然语言处理中的多标签文本分类问题,基于中医的医案数据,提出一种基于预训练模型ALBERT和双向门控循环单元(Bi-GRU)的脏腑定位模型。对比实验和消融实验的结果表明,本文提出的方法在中医脏腑定位的问题上相比于多层感知机模型、决策树模型具有更高的准确性,与Word2Vec文本表示方法相比,本文使用的ALBERT预训练模型的文本表示方法有效提升了模型的准确率。在模型参数上,ALBERT预训练模型相比BERT模型降低了模型参数量,有效减小了模型大小。最终,本文提出的脏腑定位模型在测试集上F1值达到了0.8013
文档格式:PDF 文档大小:1.26MB 文档页数:10
随着物联网技术的发展,前端传感器的使用使得低合金钢的海水腐蚀监测成为了现实,从而获得了大量的腐蚀数据。针对传统均值法处理双率腐蚀数据带来的数据信息损失以及建模精度下降问题,提出了一种基于综合指标值(CIV)和改进相关向量回归(IRVR)的双率腐蚀数据处理和建模算法(CIV-IRVR)。首先,通过构建CIV表征输入数据的综合影响并采用天牛须搜索(BAS)算法对其参数进行寻优;然后,建立最优CIV序列与输出数据间的线性回归模型将双率数据转化为建模用的单率数据,能够更多地保留原始数据信息;最后,给出了一种BAS算法优化的具有组合核函数的改进相关向量回归建模方法(IRVR),并建立了针对低合金钢海水腐蚀双率数据的CIV-IRVR预测模型。结果表明:相比于均值方法处理双率腐蚀数据,所提方法将建模样本数量由196提升到了1834;相比于海水腐蚀建模领域常用的人工神经网络(ANN)和支持向量回归(SVR)建模方法,所提模型的平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(CD)分别为1.1914 mV、1.5729 mV以及0.9963,在各项指标上均优于对比算法,说明所提模型不仅减少了信息损失还提高了建模精度,对于双率海水腐蚀数据建模具有一定现实意义
文档格式:PDF 文档大小:458.17KB 文档页数:5
以冶金工业部人才资源的管理问题为背景,给出了人才资源智能管理系统的具体设计方法.该系统中,广义的管理分析预测模型树用于其知识表达,系统结构由多库结构支持;在其推理机方面,应用元知识推理以协调定性推理、定量推理和人工神经网络推理.将有限的自然语言理解引入人-机界面,用TURBO PROLOG和C语言在IBM/AT微机上对该设计部分实现,表明了其合理性及可行性
首页上页2122232425262728下页末页
热门关键字
搜索一下,找到相关课件或文库资源 478 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有