点击切换搜索课件文库搜索结果(1126)
文档格式:DOC 文档大小:905KB 文档页数:27
定义与基本性质 一、向量的内积定义1设V是实数域R上一个向量空间在V上定义了一个二元实函数,称为内积记作(a,B),它具有以下性质:
文档格式:PPT 文档大小:1.37MB 文档页数:46
在实际应用中,常常需要考察某种物理量(如温度,密度,电场 强度,力,速度等)在空间的分布和变化规律,从数学和物理上看这 就是场的概念。 设cR3是一个区域,若在时刻t,2中每一点(x,y,z)都有一个确 定的数值f(x,y,z,t)(或确定的向量值f(x,y,z)与它对应,就称函数 f(x,y,z,t)为2上的数量场(或向量场)
文档格式:PPT 文档大小:634.5KB 文档页数:34
同济大学:《高等数学》课程电子教案(PPT课件讲稿)第七章 向量代数与空间解析几何(7.3)数量积与向量积
文档格式:PPT 文档大小:577.5KB 文档页数:45
第七章向量代数与空间解析几何习题课
文档格式:DOC 文档大小:176.5KB 文档页数:5
一、向量的内积 定义1设V是实数域R上一个向量空间在V上定义了一个二元实函数,称为内积记作(a,B),它具有以下性质:
文档格式:DOC 文档大小:66.5KB 文档页数:2
定义6设A是线性空间V的一个线性变换,的全体像组成的集合称为 的值域,用AV表示所有被A变成零向量的向量组成的集合称为A的核,用 A-(0)表示 若用集合的记号则AV={A55∈V},a-(0)={A5=0,5∈V} 线性变换的值域与核都是V的子空间 AV的维数称为A的秩,A-(0)的维数称为A的零度
文档格式:DOC 文档大小:50.5KB 文档页数:2
定理7设A是n维线性空间V的一个线性变换A的矩阵可以在某一基下为 对角矩阵的充要条件是A有n个线性无关的特征向量. 定理8属于不同特征值的特征向量是线性无关的 推论1如果在n维线性空间V中,线性变换的特征多项式在数域P中有n 个不同的根,即A有n个不同的特征值,那么A某组基下的矩阵是对角形的 推论2在复数上的线性空间中,如果线性变换A的特征多项式没有重根
文档格式:DOC 文档大小:224.5KB 文档页数:6
一、线性变换的特征值和特征向量的概念
文档格式:DOC 文档大小:154KB 文档页数:3
北京大学:《高等代数》课程教学资源(讲义)第二章 向量空间与矩阵 2.1 m 维向量空间(2.1.1-2.1.3)
文档格式:PPT 文档大小:767KB 文档页数:69
一、主要内容 (一)二阶、三阶行列式 (二)向量及其运算 (三)空间的线、面方程
首页上页3031323334353637下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1126 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有