点击切换搜索课件文库搜索结果(3525)
文档格式:PDF 文档大小:449.96KB 文档页数:53
Green 公式 设L为平面上的一条曲线,它的方程是 = + tytxt )()()( jir ,α ≤ t ≤ β 。 如果 α = rr β )()( ,而且当 ),(, tt 21 ∈ α β , 21 ≠ tt 时总成立 )()( 1 2 ≠ rr tt ,则称 L为简单闭曲线(或 Jordan 曲线)。这就是说,简单闭曲线除两个端 点相重合外,曲线自身不相交
文档格式:PDF 文档大小:172.92KB 文档页数:15
含参变量常义积分的定义 设 yxf ),( 是定义在闭矩形 × dcba ],[],[ 上的连续函数,对于任意固 定的 ∈ dcy ],[ , yxf ),( 是 ba ],[ 上关于 x的一元连续函数,因此它在 ba ],[ 上的积分存在
文档格式:PDF 文档大小:358.3KB 文档页数:64
单调有界数列收敛定理 定理2.4.1 单调有界数列必定收敛。 证 不妨设数列{ xn }单调增加且有上界,根据确界存在定理,由 { xn }构成的数集必有上确界β ,β 满足:
文档格式:PDF 文档大小:356.32KB 文档页数:41
连续函数的定义 定义3.2.1 设函数 f x( ) 在点 x0的某个邻域中有定义,并且成立 lim x x → 0 f x( ) = f x( ) 0 , 则称函数 f x( ) 在点 x0 连续,而称 x0是函数 f x( ) 的连续点。 “函数 f x( ) 在点 x0 连续”的符号表述(或称“ε −δ ”表述):
文档格式:PDF 文档大小:136.39KB 文档页数:10
微分的定义 设 y fx = ( )是一个给定的函数, 在点 x 附近有定义。若 f x( )在 x 处的 自变量产生了某个增量Δx 变成了 x + Δx (增量Δx 可正可负,但不为 零),那么它的函数值也相应地产 生了一个增量 Δyx f x x f x () ( ) () = + Δ −
文档格式:PDF 文档大小:408.15KB 文档页数:49
函数极值与Fermat引理 定义5.1.1 设 f x( )在(, ) a b 上有定义, 0 x ab ∈(,),如果存在点 x0的 某一个邻域 ),(),( 0 δ ⊂ baxO ,使得 fx fx () ( ) ≤ 0 , ),( ∈ xOx 0 δ , 则称x0是 f x( )的一个极大值点, f x( ) 0 称为相应的极大值
文档格式:PDF 文档大小:183.23KB 文档页数:20
带 Peano余项的Tay1or公式 定理5.3.1(带 Peano余项的 Taylor公式)设f(x)在x处有n阶 导数,则存在x的一个邻域,对于该邻域中的任一点x,成立
文档格式:PDF 文档大小:188.57KB 文档页数:22
性质1(线性性)设f(x)和8(x)都在[a,b上可积,k1和k2是常数 小函数kf(x)+k2g(x)在a,b上也可积,且有 ∫k/(x)+k8(x)x=k(x)dx+Jg(x)x 证对anb的任意一个划分 q=x0
文档格式:PDF 文档大小:215.05KB 文档页数:29
无穷乘积的定义 设 p1,p2,…, n p ,…( ≠ 0 n p )是无穷可列个实数,我们称它 们的“积” ⋅ 21 ⋅ ⋅ ppp n ⋅\\ 为无穷乘积,记为∏ ∞ n=1 pn ,其中 n p 称为无穷乘积的通项或一般项
文档格式:PPT 文档大小:917.5KB 文档页数:33
多元函数 定义11.2.1设D是R”上的点集,D到R的映射 f:D→R x}2 称为n元函数,记为z=f(x)。这时,D称为f的定义域,f(D) z∈R|z=f(x),x∈D}称为f的值域,={(x,z)∈R|z=f(x),x∈D称为 f的图像
首页上页346347348349350351352353下页末页
热门关键字
搜索一下,找到相关课件或文库资源 3525 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有