点击切换搜索课件文库搜索结果(506)
文档格式:PDF 文档大小:563.36KB 文档页数:6
公路上正常行驶的车辆一旦操纵失控,安装在路侧的护栏就显得极为重要,可避免车辆直接冲出道路发生致命危险.波形梁护栏是最常见的一种被动防护装置,可有效抵御车辆施加的碰撞荷载.依据常规的设计思路,这种护栏可以利用波形梁板、防阻块和立柱的变形来吸收汽车碰撞所产生的能量.但与实际情况不同的是,在这一过程中忽略了地基土体对碰撞过程可能产生的影响.本文通过分别建立不考虑和考虑地基约束作用的碰撞计算模型来研究土体的贡献.在模拟过程中,分别观测货车的运行轨迹、护栏的变形和土体的变形.此外,也分析了不同部件对碰撞能量的吸收比率.与立柱接触区毗邻的土体因受冲击荷载影响,可能发生剪切失效.整个护栏系统中超过10%的系统能量实际上是由土体吸收的,常用的简化固定基模型跟实际情况有一定的出入
文档格式:PDF 文档大小:398.05KB 文档页数:4
转炉炉壳温度升高是炉壳变形的主要原因,采用内衬石棉板隔热是降低中小型转炉炉壳温度、减轻炉壳蠕变变形的经济有效措施之一.模拟计算了某钢厂80t转炉炉壳温度场以及不同温度条件下炉壳热应力与石棉板厚度之间的关系,计算温度值与现场实测值基本吻合.当石棉板厚度为30mm左右时,炉壳温度可以控制在360℃以下;低于炉壳材质的蠕变温度,炉壳所受到的热膨胀应力仅为没加石棉板时的50%
文档格式:PDF 文档大小:704.21KB 文档页数:5
2205双相不锈钢经过1300℃固溶处理和不同程度的冷轧变形后,在不同温度下保温不同时间后水冷.利用金相显微镜和透射电镜观察试样的组织,用Image Tool软件分析组织中σ相的含量,研究2205双相不锈钢中σ相的析出规律.在950℃保温,当冷轧变形量从50%增大到85%时,σ相析出时间从30 min缩短为3 min.冷轧变形量为85%的试样,在950℃保温,当保温时间从3 min延长至30 min时,σ相的体积分数从1.2%增大到11.8%.在875~950℃保温5 min后,当温度从875升高至950℃时,σ相的体积分数从8.9%降低至3.6%;在975℃保温5 min后,组织中不存在σ相
文档格式:PDF 文档大小:293.2KB 文档页数:4
本文提供了一种用单位纯变形能建立平均纯变形抗力模型的方法
文档格式:PPT 文档大小:726KB 文档页数:35
1.纯弯曲时梁横截面上的正应力 (一)几何方面 表面变形情况 (1)纵线弯成弧线, 靠近顶面的纵 线缩短,而靠 近底面的纵线 则伸长; (2)横线仍为直线, 并与变形后的 纵线保持正交, 纯弯变形几何关系 只是横线间相 对转动
文档格式:PPT 文档大小:404KB 文档页数:20
弹性变形 在外力作用下,材料内部产生应力,应力迫使原子离开 原来的平衡位置,改变了原子间的距离,使金属发生变 形。并引起原子位能的增高,但原子有返回低位能的倾 向。当外力停止作用后,应力消失,变形也随之消失
文档格式:PDF 文档大小:339.31KB 文档页数:4
通过建立汽化燃烧区对热轧变形区进行分析计算,发现无论在热轧变形区入口处的汽化燃烧区,还是在变形区,油水混合液都没有足够的时间达到燃点,仍以液体形式存在.采用四球摩擦试验机进行了油膜强度和摩擦因数测定并进行长磨试验.磨斑表面观察表明:当轧制油在水中的质量浓度大于2 g·L-1时,润滑状态为边界润滑,该状态下的润滑作用效果取决于油膜强度,并非轧制油的质量浓度.采用2 g·L-1质量浓度进行轧制润滑生产试验,验证了上述研究结果.润滑有效地降低了轧制压力,同时对冷却水污染最小,取得了很好的润滑效果.对于不同的轧制产品与工艺而言,建议轧制油使用的质量浓度应小于10 g·L-1,否则轧制油残留可能引起冷却水污染
文档格式:PDF 文档大小:691.06KB 文档页数:8
以金相方法测定9XC钢的M点及下石氏体(贝茵体)转变的开始曲线.以磁性方法测定9XC钢在不同情况下奥氏体的稳定化作用.测定了残余奥氏体含量和9XC丝锥的变形量之间的关系.以φ24X2毫米铣牙丝锥进行工厂实际试验的结果证明,先淬火至160°停留1—3分钟,然后升至240°等温停留10分钟的新工艺方案,和在170°等温停留45分钟的工艺方案相比较,能缩短等温时间至1/4,其淬火后工件节径的变形量从0.11%减至0.06%(平均值)
文档格式:PDF 文档大小:490.69KB 文档页数:4
提出了流变应力的描述方法,该方法考虑了热变形时组织演化的影响.在此基础上,提出了一种新的金属热变形时组织演化的模拟方法,并确定了组织演化模拟程序中一些关键性因素,还讨论了冷却过程中的组织变化和性能预报问题.对Q235低碳钢的双道次压缩过程的组织演化情况进行了模拟,并和实验结果进行了对比
文档格式:PDF 文档大小:397.06KB 文档页数:3
介绍了一套自主开发的热轧工艺参数模型.该模型内耦合了不同钢种的变形抗力曲线,这些变形抗力方程中耦合了钢的化学成分、温度、应变、应变速率及奥氏体晶粒尺寸等因素.根据输入的工艺参数用西姆斯方程计算每道次的应变速率及应变量,并得到相应道次的变形抗力、热轧轧制力、力矩及功率等参数.模型可根据实测的结果自学习,并修正相应的结果.与攀钢热轧厂的实测结果相比,模型的输出结果吻合较好,预测误差在10%以内.
首页上页3435363738394041下页末页
热门关键字
搜索一下,找到相关课件或文库资源 506 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有