点击切换搜索课件文库搜索结果(438)
文档格式:PPT 文档大小:615KB 文档页数:23
微分法在几何上的应用 一、空间曲线的切线和法平面 定义设M是空间曲线L上的一个定点,M是 L上的一个动点,当M*沿曲线L趋于M 时,割线MM*的极限位置MT(如果极 限存在)称为曲线L在M处的切线 下面我们来导出空间曲线的切线方程
文档格式:PPT 文档大小:1.03MB 文档页数:37
定积分的换元法 上一节我们建立了积分学两类基本问题 之间的联系微积分基本公式,利用这 个公式计算定积分的关键是求出不定积分 ,而换元法和分部积分法是求不定积分的 两种基本方法,如果能把这两种方法直接 应用到定积分的计算,相信定能使得定积 分的计算简化,下面我们就来建立定积分 的换元积分公式和分部积分公式
文档格式:PPT 文档大小:667.5KB 文档页数:42
曲面及其方程 一、曲面方程的概念 曲面的实例:水桶的表面、台灯的罩子面等. 曲面在空间解析几何中被看成是点的几何轨迹. 曲面方程的定义: 如果曲面S与三元方程F(x,y,)=0有下述关系: (1)曲面S上任一点的坐标都满足方程; (2)不在曲面S上的点的坐标都不满足方程;那么,方程F(x,y,)=0就叫做曲面S的方程,而曲面S就叫做方程的图形
文档格式:DOC 文档大小:854.5KB 文档页数:19
线性函数 定义1设V是数域P上的一个线性空间,f是V到P的一个映射,如果f 满足 1)f(a+)=f(a)+f() 2) f(ka)=(a), 式中a,B是V中任意元素,k是P中任意数,则称f为V上的一个线性函数 从定义可推出线性函数的以下简单性质: 1.设f是v上的线性函数,则f(0)=0,f(-a)=-f(a) 2.如果B是a1,a2…,a的线性组合:
文档格式:DOC 文档大小:544.5KB 文档页数:19
设P是数域,是一个文字,作多项式环P,一个矩阵如果它的元素是 的多项式,即P[]的元素,就称为-矩阵在这一章讨论λ矩阵的一些性 质,并用这些性质来证明上一章第八节中关于若当标准形的主要定理 因为数域P中的数也是P]的元素,所以在λ矩阵中也包括以数为元素 的矩阵.为了与-矩阵相区别,把以数域P中的数为元素的矩阵称为数字矩 阵.以下用A(),B()…等表示-矩阵 我们知道,P]中的元素可以作加、减、乘三种运算
文档格式:DOC 文档大小:127.5KB 文档页数:2
设A是n维欧氏空间V内的一个线性变换,如果对a,∈V,都有 (Aa,)=(a, AB) 则称A是V内的对称变换 命题n维欧氏空间V上的线性变换A是对称变换当且仅当它在标准正交基 ,2n下的矩阵A是实对称矩阵
文档格式:DOC 文档大小:208KB 文档页数:4
第四章线性空间与线性变换 1线性空间的基本概念 4.1.1线性空间的定义及例 1、线性空间的定义 定义4.1线性空间 设V是一个非空集合,且V上有一个二元运算“+”(V×V→V),又设K为数 域,V中的元素与K中的元素有运算数量乘法“·”(K×V→V),且“+”与“·”满足如下性质: 1、加法交换律a,B∈V,有a+B=B+a; 2、加法结合律a,B,y∈V,有(a+B)+y=a+(B+y)
文档格式:DOC 文档大小:51.5KB 文档页数:1
定理设A是数域K上的n阶方阵.如果A的特征值全属于K,则A在K上相似于 Jordan形矩阵,并且在不计 Jordan块顺序的意义下 Jordan形是唯一的. 证明:此定理就是上一定理用矩阵的语言叙述出来 Jordan标准形的计算方法:
文档格式:DOC 文档大小:175KB 文档页数:2
8-2同余式 8.2.1有理整数环中的同余的定义 定义8.5设m是一个正整数,若a,b∈Z,且ba∈(m),亦即m(b-a),则 称b与a模m同余,记作b=a(modm)。不难得到,b与a模m同余就是它们用m做带 余除法所得的余数相同。整数模m同余为一等价关系,验证如下: 1、反身性:a=a(modm) 2、对称性:若b=a(modm),则a=b(modm) 3、转递性:若a=b(modm),b=c(modm),则
文档格式:DOC 文档大小:285KB 文档页数:3
设A是n维酉空间V内的线性变换,如果V内的线性变换A满足a,BV,有 (Aa, B)=(a, B) 则称A是A的共轭变换.A为A的共轭变换当且仅当它们在标准正交基下的矩阵互为共轭 转置. 共轭变换的五条性质: 1)E=E 2)(A)=A 3)(kA)*=kA 4)(A+B)=a+B 5)(AB)'=B'A' 如果A=A,则称A是一个厄米特变换
首页上页3435363738394041下页末页
热门关键字
搜索一下,找到相关课件或文库资源 438 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有