点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:491.5KB 文档页数:17
由牛顿—莱布尼兹公式知:计算定积分f(x)d 的关键在于求出f(x)在[a,b]上的一个原函数F(x);而由 第五章知求函数的原函数(即不定积分)的方法有凑微分法、 换元法和分部积分法.因而在一定条件下,也可用这几 种方法来计算定积分
文档格式:PDF 文档大小:122.34KB 文档页数:3
1.设E是R中一族(开的、闭的、半开半闭的)区间的并集.证明E Lebesgue是 可测集 2.设f是R上有界的单调增加函数.证明f在R上几乎处处可导并且f在R 上L可积
文档格式:PDF 文档大小:163.81KB 文档页数:7
在以下各题中,除题目中已有说明的外可测函数的积分都是关于给定的测度空间 (X,,)的 0,x<1 1.设F(x)={2 x2,x≥1.“p是由F导出的L-S测度.计算fdμ.其中 0,+∞ f(x) =al , +bI+cla,]
文档格式:PPT 文档大小:1.16MB 文档页数:32
Fourier级数的分析性质 为简单起见,假定f(x)的周期为2π。 首先,利用 Riemann引理可以直接得出 定理16.3.1设f(x)在[-上可积或绝对可积,则对于f(x)的 Fourier系数an与b
文档格式:DOC 文档大小:426.5KB 文档页数:19
一、导数概念() 10定义f(xo)=limy △x→0△x lim f(xo+△x)-f(x0) x→0
文档格式:PPT 文档大小:227KB 文档页数:9
定义 10.5.1 设函数 f (x)在闭区间[a, b]上有定义,如果存在多项 式序列{Pn (x)}在[a, b] 上一致收敛于 f (x),则称 f (x)在这闭区间上 可以用多项式一致逼近
文档格式:PPT 文档大小:596.5KB 文档页数:20
复合函数求导法则 定理4.4.1(复合函数求导法则)设函数u=g(x)在x=x可导, 函数y=f(u)在u=uo=g(x)处可导,则复合函数y=f(g(x))在x=x可 导,且有 证因为y=f(u)在u处可导,所以可微。由可微的定义,对任 意一个充分小的△u≠0,都有
文档格式:PPT 文档大小:1.01MB 文档页数:5
二维随机变量(x,作为一个整体,它具 有联合分布函数F(x,y)而和都是一维随机变 干量,它们也有自身的概率分布,分别称为,r 关于和Y的边缘分布(Marginal Distribution),其相应的分布函数F(x)F(y) 依次称为二维随机变量是关于和关于的边缘 分布函数(Marginal Distribution Function).易知
文档格式:PPT 文档大小:1.28MB 文档页数:29
有界性定理 定理3.4.1若函数f(x)在闭区间[a,b]上连续,则它在[a,b]上有 界。 证用反证法。 若f(x)在[ab]上无界,将[ab]等分为两个小区间[aa+b]与 a+b,b,则f(x)至少在其中之一上无界,把它记为[a,b] 再将闭区间[ab]与等分为两个小区间a1,a1+b]与a1+b
文档格式:PPT 文档大小:215KB 文档页数:32
5 LINGO WINDOWS命令 5.1文件菜单(File Menu) 1.1.新建(New) 选用“新建”命令、单击“新建”按钮或直接按F2键可创建一个新的“Model”窗口,输入所要求解的模型。 1.2.打开(0pen) 选用“打开”命令、单击“打开”按钮或直接按F3键可打开一个已经存在的文本文件。此文件可能是 Model文件。 1.3.保存(Save) 选用“保存”命令、单击“保存”按钮或直接按F4键保存当前活动窗口(最前台的窗口)中的模型结果、命令序列等保存为文件
首页上页3435363738394041下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有