点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:268.56KB 文档页数:32
Fourier 级数的分析性质 为简单起见,假定 f x( )的周期为2π。 首先,利用 Riemann 引理可以直接得出 定理 16.3.1 设 f x( )在[−π,π]上可积或绝对可积,则对于 f x( )的 Fourier 系数an与bn,有
文档格式:PDF 文档大小:322.17KB 文档页数:29
无条件极值 定义 12.6.1 设 D n ∈R 为开区域, f x)( 为定义在 D 上的函数, 0 x ),,,( 002 01 n = \ xxx ∈D。若存在 0 x 的邻域 ),( 0 x rO ,使得 )),()(()()( 0 0 ≥ 或 ≤ ffff xxxx x ∈ ),( 0 x rO , 则称 0 x 为 f 的极大值点(或极小值点);相应地,称 )( 0 f x 为相应的极 大值(或极小值);极大值点与极小值点统称为极值点,极大值与极 小值统称为极值
文档格式:DOC 文档大小:292KB 文档页数:5
作业参考答案 第一章1-2,1-3,1-4,1-6,1-12,1-16 1-2 t+1-2≤t≤0 (a)解:f(t)= t+10≤t≤2 2 用u(t)的形式表示为:1-+2)u(- (b)解:f(t)=u(t)+u(t-1)+u(t-2) (c)解:f(t)=Esinu(t)-u(t-T),其中= 2ππ
文档格式:PPS 文档大小:711KB 文档页数:48
2.3连续型随机变量 连续型rv的概念 定义设是随机变量,若存在一个非负 可积函数(x),使得 其中F(x)是它的分布函数 则称x是连续型rv,f(x)是它的概率 密度函数(p.d.f.),简记为df
文档格式:PPT 文档大小:491.5KB 文档页数:17
由牛顿—莱布尼兹公式知:计算定积分f(x)d 的关键在于求出f(x)在[a,b]上的一个原函数F(x);而由 第五章知求函数的原函数(即不定积分)的方法有凑微分法、 换元法和分部积分法.因而在一定条件下,也可用这几 种方法来计算定积分
文档格式:PPT 文档大小:201.5KB 文档页数:16
初等函数的连续性 一、四则运算的连续性 定理1若函数f(x),g(x)在点x处连续, 则f(x)±g(x),f(x)g(x),y(x) (g(x)≠0) g(x) 在点x处也连续 例如,sinx,cosx在(-t∞)内连续, 故tanx,cotx,secx,cscx在其定义域内连续
文档格式:PDF 文档大小:93.87KB 文档页数:17
3.1 Jacobi矩阵与 Jacobi行列式 这章以及下一章中,我们希望用偏导数来研究多元函数和多元向量函数 设G和Ω分别是R\和R中区域,F:G→Ω是一向量函数.要研究F,我们需要 了解F的象集
文档格式:PPT 文档大小:899.5KB 文档页数:34
微分中值定理包括罗尔定理、拉格朗日中值定理、柯西中值定理 一.罗尔(Rolle)定理 定理1(罗尔定理)设函数f(x)满足下列条件: (1)在闭区间[a,b]上连续; (2)在开区间(a,b)上可导; (3)f(a)=f(b);
文档格式:PDF 文档大小:167.54KB 文档页数:31
2.1序列极限定义 定义域为N的函数也称为序列,记为f(),f(2),A,f(n),A,习惯上记为 x1,x2,A,xn,A,或简单地记为{xn}。其中xn称为通项,它可由公式给出,也可由其它法 则给出
文档格式:PPT 文档大小:150KB 文档页数:5
函数y=f(x)的导数f(x)仍x是的函数.若(x)在 点x处仍可导,则称∫(x)在x处的导数为函数y=f(x) 在x处的二阶导数记为
首页上页3637383940414243下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有