点击切换搜索课件文库搜索结果(63)
文档格式:PPT 文档大小:439.5KB 文档页数:24
各种收敛定义 几乎处处收敛:fn→fa.e于 去掉某个零测度集,在留下的集合上处处收敛 几乎一致收敛:fn→fau.于E 去掉某个小(任意小)测度集,在留下的集合上一致收敛 依测度收敛:fn→E
文档格式:PPT 文档大小:423KB 文档页数:24
各种收敛定义 几乎处处收敛:fn→fae.于 去掉某个零测度集,在留下的集合上处处收敛 几乎一致收敛:fn→fau.于E 去掉某个小(任意小)测度集,在留下的集合上一致收敛 依测度收敛:fn→fE
文档格式:PDF 文档大小:163.81KB 文档页数:7
在以下各题中,除题目中已有说明的外可测函数的积分都是关于给定的测度空间
文档格式:PDF 文档大小:163.81KB 文档页数:7
在以下各题中, 除题目中已有说明的外, 可测函数的积分都是关于给定的测度空间
文档格式:PDF 文档大小:178.64KB 文档页数:7
在以下各题中, 除题目中已有说明的外, 可测函数的积分都是关于给定的测度空间
文档格式:PDF 文档大小:93.5KB 文档页数:2
定义3.3.1若E可以表成至多可列个闭集之并,则称E为Fa型集;若 E可以表成至多可列个开集之交,则称E为G型集;若E可以看成由区间出发 经至多可列次交并余差运算的结果,则称E为 Borel集 由开集与闭集的对偶性可直接得到Fa型集与G6型集的对偶性:F为Fa型 集CF是G型集,G为G型集CG是F型集 证明留作习题
文档格式:PDF 文档大小:196.39KB 文档页数:7
使学生对可测函数序列的几乎处处收敛性,依测度收敛性 和几乎一致收敛性及它们的之间蕴涵关系有一个全面的了解 本节要点本节引进的几种收敛是伴随测度的建立而产生的新的收敛 性.特别是依测度收敛是一种全新的收敛,与熟知的处处收敛有很大的差 异. Egorov定理和 Riesz定理等揭示了这几种收敛之间的关系. Riesz定 理在几乎处处收敛和较难处理的依测度收敛之间架起了一座桥梁
文档格式:PDF 文档大小:103.3KB 文档页数:2
在数学分析中,我们己经知道,即使函数列在每一点收敛,也不能保证一致 收敛,因此,对可能在某个零测度集上不收敛的函数列而言,更谈不上一致收敛。 例如f(x)=x”处处0于,却不一致收敛。究其原因是自变量越靠近0越收 敛速度慢,只有更慢没有最慢,从而不可能一致收敛。但不难看出,只要挖去 个以1为右端点的小区间(1-6,1)后就有收敛最慢点x=1-8了,从而可以保 证一致收敛了。著名的俄国数学家叶果落夫( ETOPOB)任何可测函数都有 类似结果,即有下述定理成立
文档格式:PPT 文档大小:212.5KB 文档页数:13
Lebesgue外测度(外包)
文档格式:PDF 文档大小:101.93KB 文档页数:3
定理3.4.1若AcR\,BcR”,且均可测,则A×B={(a,b)|a∈A,b∈B} R\×R为可测集,且m(A×B)= mAXmB 证明1)若区间IcR\,I2cR,则显然I×I2为R\×R中的区间,从 而可测。且|I×12|=|I|×|I2|
上页1234567下页
热门关键字
搜索一下,找到相关课件或文库资源 63 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有