点击切换搜索课件文库搜索结果(601)
文档格式:DOC 文档大小:401KB 文档页数:8
例1设x2=vw,y2=uw,z=uv及f(x,y,z)=F(uvw),证明 2 x =ww x=x(u,v,w) 证方程组{y2=uw确定了函数组{y=yu,vw),先求这个函数组对各变元的偏导
文档格式:PDF 文档大小:214.27KB 文档页数:32
∑ ∞ = − 0 0 )( n n n xxa = a0 + )(1 0 − xxa 2 2 0 −+ xxa )( +\+ n n xxa )( − 0 +\ 这样的函数项级数称为幂级数。幂级数的部分和函数 Sn(x)是一个n −1 次多项式。 为了方便,我们通常取 0 x = 0, 也就是讨论 ∑ ∞ n=0 n n xa = a0 + 1 xa 2 2 + xa +\+ n n xa +\, 然后对所得的结果做一个平移 x = 0 − xt ,就可以平行推广到x0 ≠ 0的情 况
文档格式:DOC 文档大小:589KB 文档页数:9
1.应用格林公式计算下列积分: (1)xy2dy-x2ydx,其中L为椭圆+=1,取正向; (2) (x+y)dx+(x-y)dy, (1):
文档格式:DOC 文档大小:544KB 文档页数:11
1.求抛物线y=x2在A(1,1)点和B(-2,4)点的切线方程和法线方程 2.若S=vt (1)在t=1,t=1+△t之间的平均速度(设△t=1,0.1,0.01)
文档格式:PDF 文档大小:373.6KB 文档页数:55
函数极限的定义 在半径为 r 的圆上任取一小段圆弧,记它所对的圆心角的弧度为 2 x,则圆弧长度为 2 x r ,而圆弧所对的弦的长度为2 sin r x ,弦长与弧长 之比值 y 是 x的函数
文档格式:PPT 文档大小:753.5KB 文档页数:24
链式规则 设z=f(x,y)(x,y)∈D,是区域D,CR2上的二元函数,而 g:D→R2, (u,v)→(x(u,v),y(uv) 是区域DCR2上的二元二维向量值函数。如果g的值域g(D)=D 那么可以构造复合函数 =fog= f[x(u,v), y(u,v), (u,).o 复合函数有如下求偏导数的法则
文档格式:PDF 文档大小:166.97KB 文档页数:24
链式规则 设 = yxyxfz ),(),,( ∈ Df 是区域Df ⊂ 2 R 上的二元函数,而 : g g D → 2 R , 6 vuyvuxvu )),(),,((),( 是区域Dg ⊂ 2 R 上的二元二维向量值函数。如果 g 的值域 g D( ) g ⊂ Df , 那么可以构造复合函数 = fz D g = vuvuyvuxf ),()],,(),,([ ∈ Dg
文档格式:DOC 文档大小:239.5KB 文档页数:6
凸函数定义及其等价形式: 设f(x)在区间I上有定义,若对任意x1、x2∈I,A∈[0,1]成立不等式: f(Ax1+(1-4)x2)≤Af(x1)+(1-λ)f(x2) 则称f(x)是区间I上的凸函数
文档格式:PPT 文档大小:2.17MB 文档页数:55
函数极限的定义 在半径为r 的圆上任取一小段圆弧,记它所对的圆心角的弧度为 2x,则圆弧长度为2xr,而圆弧所对的弦的长度为2 sin r x,弦长与弧长 之比值 y是 x 的函数,其关系式为
文档格式:PPT 文档大小:1.15MB 文档页数:31
重积分的性质 性质1(线性性)设f和g都在区域Ω上可积,a,B为常数,则 af+Bg在上也可积,并且 (af+Bg)dv =a fdv+ gdv Ω 性质2(区域可加性)设区域Ω被分成两个内点不相交的区域 Q1和2,如果f在Q上可积,则f在21和2上都可积;反之,如 果f在Ω1和Q2上可积,则f也在上可积
首页上页4849505152535455下页末页
热门关键字
搜索一下,找到相关课件或文库资源 601 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有