点击切换搜索课件文库搜索结果(5951)
文档格式:DOC 文档大小:224.5KB 文档页数:6
一、线性变换的特征值和特征向量的概念
文档格式:PDF 文档大小:50.13KB 文档页数:9
„ 正规子群及判定 „ 定义 „ 判别定理 „ 判别法 „ 商群 „ 定义及其实例 „ 性质
文档格式:DOC 文档大小:182.5KB 文档页数:4
一、线性变换的乘法 设A,B是线性空间V的两个线性变换,定义它们的乘积为 (AB)(a)=A,B(a))(a∈V) 则线性变换的乘积也是线性变换 线性变换的乘法适合结合律,即 (AB)C=(BC)
文档格式:PDF 文档大小:688.5KB 文档页数:22
„ 变换群 „ 变换群的定义 „ 变换群的实例 „ n元置换群 „ 置换的表示 „ 置换的乘法和求逆运算 „ 置换群中元素的阶与子群 „ 置换群的实例 „ 陪集及其性质 „ Lagrange定理 „ Lagrange定理的应用 „ 共轭关系与共轭类 „ 群的分类方程
文档格式:DOC 文档大小:111KB 文档页数:2
设E1,E2,…,E是线性空间V的一组基,在这组基下,V中每个向量都有确定 的坐标,而向量的坐标可以看成P元素,因此向量与它的坐标之间的对应实质 上就是V到P的一个映射.显然这个映射是单射与满射,换句话说,坐标给出了 线性空间V与P的一个双射.这个对应的重要性表现在它与运算的关系上
文档格式:DOC 文档大小:61KB 文档页数:1
定义 9 设 1 2 V ,V 是线性空间 V 的子空间,如果和 V1+V2 中每个向量  的分 解式
文档格式:DOC 文档大小:109KB 文档页数:3
定理 5 如果 V1 ,V2 是线性空间 V 的两个子空间,那么它们的交 V1 V2 也是 V 的子空间
文档格式:PDF 文档大小:441.4KB 文档页数:19
„ 子群定义 „ 子群判别定理 „ 重要子群的实例 „ 生成子群 „ 中心 „ 正规化子 „ 共轭子群 „ 子群的交 „ 子群格 „ 循环群的定义 „ 循环群的分类 „ 生成元 „ 子群 „ 循环群的实例
文档格式:DOC 文档大小:132KB 文档页数:4
在 n 维线性空间中,任意 n 个线性无关的向量都可以取作空间的基.对于不 同的基,同一个向量的坐标一般是不同的.随着基的改变,向量的坐标是怎样变 化的
文档格式:PDF 文档大小:78.13KB 文档页数:17
„ 群的定义 „ 定义与实例 „ 等价定义 „ 相关术语 „ 群的性质 „ 幂运算规则 „ 群方程有唯一解 „ 消去律 „ 运算表的置换性质 „ 元素的阶的性质 „ 习题分析
首页上页535536537538539540541542下页末页
热门关键字
搜索一下,找到相关课件或文库资源 5951 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有